Greener Microplastics Removal: Progressive Replacement of Iron-Based Coagulants with Sodium Alginate and Chitosan to Enhance Sustainability.

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Marco Facchino, Loris Pietrelli, Patrizia Menegoni, Mauro Capocelli, Emanuele Limiti, Marcella Trombetta, Francesco Basoli, Marcello De Falco
{"title":"Greener Microplastics Removal: Progressive Replacement of Iron-Based Coagulants with Sodium Alginate and Chitosan to Enhance Sustainability.","authors":"Marco Facchino, Loris Pietrelli, Patrizia Menegoni, Mauro Capocelli, Emanuele Limiti, Marcella Trombetta, Francesco Basoli, Marcello De Falco","doi":"10.1002/cplu.202400736","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater treatment plants (WWTPs) currently represent one of the main sources for microplastics (MPs) and other emerging contaminants entering the environment. Coagulation is a longstanding and cost-effective process designed to enhance the removal of colloidal particles and proved to be efficient in the abatement of MPs. The present study investigates the feasibility of a progressive replacement of ferric chloride (FeCl3) with chitosan (CT) and sodium alginate (SA), starting from their use as coagulant aids. Coagulations tests were carried out to assess the performance of FeCl3-CT and FeCl3-SA systems in the removal of polystyrene (PS) microbeads, polyethylene (PE) and polyethylene terephthalate (PET) fragments with sizes lower than 500 μm. Results from experiments have shown that both CT and SA are useful to enhance the removal performance of conventional coagulation by improving the settling characteristics of flocs. The use of CT allows a reduction of coagulant dosage for removing PS and PE particles, while it turned out to be detrimental for the removal of PET fragments. Instead, SA at a concentration of 0.2 mg L-1 proved to be useful both to achieve higher removal rate at a medium dosage of coagulant and to improve the efficiency of the process at lower dosages.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400736"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400736","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater treatment plants (WWTPs) currently represent one of the main sources for microplastics (MPs) and other emerging contaminants entering the environment. Coagulation is a longstanding and cost-effective process designed to enhance the removal of colloidal particles and proved to be efficient in the abatement of MPs. The present study investigates the feasibility of a progressive replacement of ferric chloride (FeCl3) with chitosan (CT) and sodium alginate (SA), starting from their use as coagulant aids. Coagulations tests were carried out to assess the performance of FeCl3-CT and FeCl3-SA systems in the removal of polystyrene (PS) microbeads, polyethylene (PE) and polyethylene terephthalate (PET) fragments with sizes lower than 500 μm. Results from experiments have shown that both CT and SA are useful to enhance the removal performance of conventional coagulation by improving the settling characteristics of flocs. The use of CT allows a reduction of coagulant dosage for removing PS and PE particles, while it turned out to be detrimental for the removal of PET fragments. Instead, SA at a concentration of 0.2 mg L-1 proved to be useful both to achieve higher removal rate at a medium dosage of coagulant and to improve the efficiency of the process at lower dosages.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信