Effects of D-Amino Acid Replacements on the Conformational Stability of Miniproteins

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-02-13 DOI:10.1002/cbic.202500085
Ruiwen Xu, Jiawen Huang, Ariel J. Kuhn, Samuel H. Gellman
{"title":"Effects of D-Amino Acid Replacements on the Conformational Stability of Miniproteins","authors":"Ruiwen Xu,&nbsp;Jiawen Huang,&nbsp;Ariel J. Kuhn,&nbsp;Samuel H. Gellman","doi":"10.1002/cbic.202500085","DOIUrl":null,"url":null,"abstract":"<p>For many proteins, proper function requires adoption of a specific tertiary structure. This study explores the effects of L-to-D amino acid substitutions on tertiary structure stability for two well-known miniproteins, a single-site variant of the chicken villin headpiece subdomain (VHP) and the human Pin1 WW domain (WW). For VHP, which features an α-helix-rich tertiary structure, substitutions led to significant destabilization, as detected by variable temperature circular dichroism (CD) measurements. For WW, which has a β-sheet-rich tertiary structure, most single L-to-D changes seemed to cause complete unfolding at room temperature, according to CD measurements. These findings suggest that amino acid residue configuration changes at a single site will often prove to be deleterious in terms of tertiary structure stability, and in some cases dramatically destabilizing.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"26 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202500085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202500085","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For many proteins, proper function requires adoption of a specific tertiary structure. This study explores the effects of L-to-D amino acid substitutions on tertiary structure stability for two well-known miniproteins, a single-site variant of the chicken villin headpiece subdomain (VHP) and the human Pin1 WW domain (WW). For VHP, which features an α-helix-rich tertiary structure, substitutions led to significant destabilization, as detected by variable temperature circular dichroism (CD) measurements. For WW, which has a β-sheet-rich tertiary structure, most single L-to-D changes seemed to cause complete unfolding at room temperature, according to CD measurements. These findings suggest that amino acid residue configuration changes at a single site will often prove to be deleterious in terms of tertiary structure stability, and in some cases dramatically destabilizing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信