Structural and Mechanistic Insight into the Enantioselectivity of (R)-Selective Styrene Monooxygenases: A Tug-of-War between Proximal and Distal Residues.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhi-Pu Li, Lanteng Wang, Yan Liu, Xiao-Qiong Pei, M Qaiser Fatmi, Zhuanglin Shen, Jian Zhao, Hui Lin, Jiahai Zhou, Zhong-Liu Wu
{"title":"Structural and Mechanistic Insight into the Enantioselectivity of (R)-Selective Styrene Monooxygenases: A Tug-of-War between Proximal and Distal Residues.","authors":"Zhi-Pu Li, Lanteng Wang, Yan Liu, Xiao-Qiong Pei, M Qaiser Fatmi, Zhuanglin Shen, Jian Zhao, Hui Lin, Jiahai Zhou, Zhong-Liu Wu","doi":"10.1002/anie.202423117","DOIUrl":null,"url":null,"abstract":"<p><p>Group E flavoprotein monooxygenases (GEMs) are well-known for catalyzing enantioselective epoxidation reactions. However, engineering their enantioselectivity remains a significant challenge, largely due to a limited understanding of the underlying mechanisms. Among these enzymes, (R)-selective styrene monooxygenases ((R)-SMOs) stand out due to their unusual enantio-switch behavior when catalyzing p-substituted styrenes. This unique property provides an exceptional opportunity to investigate the enantiocontrol mechanisms within GEMs. In this study, we resolved the first crystal structure of an (R)-SMO, SeStyA, derived from Streptomyces. By integrating this structural information with molecular docking and molecular dynamics (MD) simulations, we identified four key residues critical to enantiodivergency: two distal residues (S178 and A219) and two proximal residues (A59 and A312). Strikingly, a \"tug-of-war\" mechanism was revealed through saturation mutagenesis, wherein the side-chain sizes of proximal and distal residues exerted opposing influences on enantioselectivity at the C=C bond. Leveraging this mechanistic insight, we successfully engineered SMOs with excellent (R)- or (S)-enantioselectivity.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202423117"},"PeriodicalIF":16.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423117","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Group E flavoprotein monooxygenases (GEMs) are well-known for catalyzing enantioselective epoxidation reactions. However, engineering their enantioselectivity remains a significant challenge, largely due to a limited understanding of the underlying mechanisms. Among these enzymes, (R)-selective styrene monooxygenases ((R)-SMOs) stand out due to their unusual enantio-switch behavior when catalyzing p-substituted styrenes. This unique property provides an exceptional opportunity to investigate the enantiocontrol mechanisms within GEMs. In this study, we resolved the first crystal structure of an (R)-SMO, SeStyA, derived from Streptomyces. By integrating this structural information with molecular docking and molecular dynamics (MD) simulations, we identified four key residues critical to enantiodivergency: two distal residues (S178 and A219) and two proximal residues (A59 and A312). Strikingly, a "tug-of-war" mechanism was revealed through saturation mutagenesis, wherein the side-chain sizes of proximal and distal residues exerted opposing influences on enantioselectivity at the C=C bond. Leveraging this mechanistic insight, we successfully engineered SMOs with excellent (R)- or (S)-enantioselectivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信