Electrostatic Co-Assembly of Cyanine Pair for Augmented Photoacoustic Imaging and Photothermal Therapy.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haiqiao Huang, Yingnan Wu, Xin He, Yahang Liu, Jing-Hui Zhu, Mingrui Gu, Danhong Zhou, Saran Long, Yahui Chen, Lei Wang, Mingle Li, Xiaoqiang Chen, Xiaojun Peng
{"title":"Electrostatic Co-Assembly of Cyanine Pair for Augmented Photoacoustic Imaging and Photothermal Therapy.","authors":"Haiqiao Huang, Yingnan Wu, Xin He, Yahang Liu, Jing-Hui Zhu, Mingrui Gu, Danhong Zhou, Saran Long, Yahui Chen, Lei Wang, Mingle Li, Xiaoqiang Chen, Xiaojun Peng","doi":"10.1002/advs.202416905","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular phototheranostic dyes are of eminent interest for oncological diagnosis and imaging-guided phototherapy. However, it remains challenging to develop photosensitizers (PSs) that simultaneously integrate high-contrast photoacoustic imaging and efficient therapeutic capabilities. In this work, a supramolecular strategy is employed to construct a molecular pair phototheranostic agent via the direct self-assembly of two cyanines, C5TNa (anionic) and Cy-Et (cationic). The Coulombic interactions between C5TNa and Cy-Et facilitate the formation of a complementary cyanine pair (C5T-ET) and the creation of supramolecular CT-J-type aggregates in water. This complementary cyanine pair (C5T-ET) results in completely quenched fluorescence and significantly enhances nonradiative deactivation (≈22 ps), leading to a 3.3-fold increase in photothermal conversion efficiency and a 7.1-fold enhancement in photoacoustic response compared to indocyanine green (ICG). As a result, the J-type aggregate cyanine pair (C5T-ET) demonstrates high photoacoustic imaging capability and remarkable antitumor phototheranostic efficacy in vivo, highlighting its potential for clinical applications. This work provides strong experimental evidence for the superior performance of the complementary cyanine pair (C5T-ET) in enhancing photosensitization and photoacoustic response. It is believed that this strategy will propel the advancement of controllable dye J-aggregates and contribute to the practical implementation of photoacoustic imaging and phototherapy in vivo.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2416905"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202416905","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular phototheranostic dyes are of eminent interest for oncological diagnosis and imaging-guided phototherapy. However, it remains challenging to develop photosensitizers (PSs) that simultaneously integrate high-contrast photoacoustic imaging and efficient therapeutic capabilities. In this work, a supramolecular strategy is employed to construct a molecular pair phototheranostic agent via the direct self-assembly of two cyanines, C5TNa (anionic) and Cy-Et (cationic). The Coulombic interactions between C5TNa and Cy-Et facilitate the formation of a complementary cyanine pair (C5T-ET) and the creation of supramolecular CT-J-type aggregates in water. This complementary cyanine pair (C5T-ET) results in completely quenched fluorescence and significantly enhances nonradiative deactivation (≈22 ps), leading to a 3.3-fold increase in photothermal conversion efficiency and a 7.1-fold enhancement in photoacoustic response compared to indocyanine green (ICG). As a result, the J-type aggregate cyanine pair (C5T-ET) demonstrates high photoacoustic imaging capability and remarkable antitumor phototheranostic efficacy in vivo, highlighting its potential for clinical applications. This work provides strong experimental evidence for the superior performance of the complementary cyanine pair (C5T-ET) in enhancing photosensitization and photoacoustic response. It is believed that this strategy will propel the advancement of controllable dye J-aggregates and contribute to the practical implementation of photoacoustic imaging and phototherapy in vivo.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信