4D Assembly of Time-dependent Lanthanide Supramolecular Multicolor Phosphorescence for Encryption and Visual Sensing.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yun-Ga Wu, Wei-Lei Zhou, Yugui Qiu, Siwei Wang, Jinglin Liu, Yong Chen, Xiufang Xu, Yu Liu
{"title":"4D Assembly of Time-dependent Lanthanide Supramolecular Multicolor Phosphorescence for Encryption and Visual Sensing.","authors":"Yun-Ga Wu, Wei-Lei Zhou, Yugui Qiu, Siwei Wang, Jinglin Liu, Yong Chen, Xiufang Xu, Yu Liu","doi":"10.1002/advs.202415418","DOIUrl":null,"url":null,"abstract":"<p><p>Supramolecular dynamic room temperature phosphorescence (RTP) is the focus of current research because of its wide application in biological imaging and information anti-counterfeiting. Herein, a time-dependent supramolecular lanthanide phosphorescent 4D assembly material with multicolor luminescence including white, which is composed of 4-(4-bromophenyl)-pyridine salt derivative (G), inorganic clay (LP)/Eu complex and pyridine dicarboxylic acid (DPA) is reported. Compared with the self-assembled nanoparticle G, the lamellar assembly G/LP showed the double emission of fluorescence at 380 nm and phosphorescence at 516 nm over time. Within 60 min, the phosphorescence lifetime and the quantum yield increases from none to 7.4 ms and 27.53% respectively, achieving the time-dependent phosphorescence emission, due to the limitation of progressive stacking of LP electrostatically driven \"domino effect.\" Furthermore, the 4D assembly of DPA and G/LP/Eu leads to a time-resolved multicolor emission from colorless to purple to white, which is successfully applied to information multi-level logic anti-counterfeiting and efficiently antibiotic selective sensor.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2415418"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202415418","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular dynamic room temperature phosphorescence (RTP) is the focus of current research because of its wide application in biological imaging and information anti-counterfeiting. Herein, a time-dependent supramolecular lanthanide phosphorescent 4D assembly material with multicolor luminescence including white, which is composed of 4-(4-bromophenyl)-pyridine salt derivative (G), inorganic clay (LP)/Eu complex and pyridine dicarboxylic acid (DPA) is reported. Compared with the self-assembled nanoparticle G, the lamellar assembly G/LP showed the double emission of fluorescence at 380 nm and phosphorescence at 516 nm over time. Within 60 min, the phosphorescence lifetime and the quantum yield increases from none to 7.4 ms and 27.53% respectively, achieving the time-dependent phosphorescence emission, due to the limitation of progressive stacking of LP electrostatically driven "domino effect." Furthermore, the 4D assembly of DPA and G/LP/Eu leads to a time-resolved multicolor emission from colorless to purple to white, which is successfully applied to information multi-level logic anti-counterfeiting and efficiently antibiotic selective sensor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信