Predicting the Electron Density of Charged Systems Using Machine Learning.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-02-27 Epub Date: 2025-02-13 DOI:10.1021/acs.jpca.4c08583
Sherif Abdulkader Tawfik, Sunil Gupta, Svetha Venkatesh
{"title":"Predicting the Electron Density of Charged Systems Using Machine Learning.","authors":"Sherif Abdulkader Tawfik, Sunil Gupta, Svetha Venkatesh","doi":"10.1021/acs.jpca.4c08583","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of the electron density in molecules and crystals is a key pillar in the first-principles computation of their properties. Using machine learning to predict the electron density by using the atomic structure alone can save the computational cost of performing first-principles computations. While various machine learning approaches have been introduced for predicting the electron density, none of them predict the electron density for charged systems. This work extends a recent machine learning charge density model, DeepDFT, by including the charge of the structure as an input parameter into the model. We establish an input charge representation approach that successfully predicts the charged electron densities for several test cases, including charged defective perovskites, LiCoO<sub>2</sub> supercells with multiple Li vacancies, diamond-based defects, metal-organic frameworks, and molecular crystals.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2117-2122"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08583","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of the electron density in molecules and crystals is a key pillar in the first-principles computation of their properties. Using machine learning to predict the electron density by using the atomic structure alone can save the computational cost of performing first-principles computations. While various machine learning approaches have been introduced for predicting the electron density, none of them predict the electron density for charged systems. This work extends a recent machine learning charge density model, DeepDFT, by including the charge of the structure as an input parameter into the model. We establish an input charge representation approach that successfully predicts the charged electron densities for several test cases, including charged defective perovskites, LiCoO2 supercells with multiple Li vacancies, diamond-based defects, metal-organic frameworks, and molecular crystals.

预测分子和晶体中的电子密度是第一原理计算其性质的关键支柱。利用机器学习仅通过原子结构预测电子密度可以节省进行第一原理计算的计算成本。虽然已有多种机器学习方法用于预测电子密度,但没有一种方法能预测带电系统的电子密度。本研究扩展了最近推出的机器学习电荷密度模型 DeepDFT,将结构的电荷作为输入参数纳入模型。我们建立了一种输入电荷表示方法,成功地预测了几种测试案例的带电电子密度,包括带电缺陷包晶石、具有多个锂空位的钴酸锂超级电池、基于金刚石的缺陷、金属有机框架和分子晶体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信