Structure and Dynamics of the Magnetite(001)/Water Interface from Molecular Dynamics Simulations Based on a Neural Network Potential.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Salvatore Romano, Pablo Montero de Hijes, Matthias Meier, Georg Kresse, Cesare Franchini, Christoph Dellago
{"title":"Structure and Dynamics of the Magnetite(001)/Water Interface from Molecular Dynamics Simulations Based on a Neural Network Potential.","authors":"Salvatore Romano, Pablo Montero de Hijes, Matthias Meier, Georg Kresse, Cesare Franchini, Christoph Dellago","doi":"10.1021/acs.jctc.4c01507","DOIUrl":null,"url":null,"abstract":"<p><p>The magnetite/water interface is commonly found in nature and plays a crucial role in various technological applications. However, our understanding of its structural and dynamical properties at the molecular scale remains still limited. In this study, we developed an efficient Behler-Parrinello neural network potential (NNP) for the magnetite/water system, paying particular attention to the accurate generation of reference data with density functional theory. Using this NNP, we performed extensive molecular dynamics simulations of the magnetite (001) surface across a wide range of water coverages, from single molecules to bulk water. Our simulations revealed several new ground states of low coverage water on the Subsurface Cation Vacancy (SCV) model and yielded a density profile of water at the surface that exhibits marked layering. By calculating mean square displacements, we obtained quantitative information on the diffusion of water molecules on the SCV for different coverages, revealing significant anisotropy. Additionally, our simulations provided qualitative insights into the dissociation mechanisms of water molecules at the surface.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01507","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetite/water interface is commonly found in nature and plays a crucial role in various technological applications. However, our understanding of its structural and dynamical properties at the molecular scale remains still limited. In this study, we developed an efficient Behler-Parrinello neural network potential (NNP) for the magnetite/water system, paying particular attention to the accurate generation of reference data with density functional theory. Using this NNP, we performed extensive molecular dynamics simulations of the magnetite (001) surface across a wide range of water coverages, from single molecules to bulk water. Our simulations revealed several new ground states of low coverage water on the Subsurface Cation Vacancy (SCV) model and yielded a density profile of water at the surface that exhibits marked layering. By calculating mean square displacements, we obtained quantitative information on the diffusion of water molecules on the SCV for different coverages, revealing significant anisotropy. Additionally, our simulations provided qualitative insights into the dissociation mechanisms of water molecules at the surface.

磁铁矿/水界面常见于自然界,在各种技术应用中发挥着至关重要的作用。然而,我们对其分子尺度的结构和动力学特性的了解仍然有限。在本研究中,我们为磁铁矿/水体系开发了一种高效的贝勒-帕里内罗神经网络势(NNP),并特别关注用密度泛函理论精确生成参考数据。利用这种神经网络势,我们对磁铁矿 (001) 表面进行了广泛的分子动力学模拟,模拟范围涵盖了从单分子到大体积水的各种水覆盖情况。我们的模拟揭示了表面下阳离子空位(SCV)模型中低覆盖率水的几种新基态,并得出了表面水的密度曲线,该曲线表现出明显的分层。通过计算均方位移,我们获得了不同覆盖率的水分子在 SCV 上扩散的定量信息,揭示了显著的各向异性。此外,我们的模拟还提供了有关表面水分子解离机制的定性见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信