Implementation of Genetic Algorithms to Optimize Metal-Organic Frameworks for CO2 Capture.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2025-02-25 Epub Date: 2025-02-14 DOI:10.1021/acs.langmuir.4c04386
Thang D Pham, Randall Q Snurr
{"title":"Implementation of Genetic Algorithms to Optimize Metal-Organic Frameworks for CO<sub>2</sub> Capture.","authors":"Thang D Pham, Randall Q Snurr","doi":"10.1021/acs.langmuir.4c04386","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) are promising materials for CO<sub>2</sub> capture with the potential to use less energy than current industrial CO<sub>2</sub> capture methods. MOFs are highly versatile sorbents, and there is an almost unlimited number of MOFs that could be synthesized. In this work, we used a genetic algorithm (GA) and grand canonical Monte Carlo (GCMC) simulations to efficiently search for high-performing MOFs for CO<sub>2</sub> capture. We analyzed the effects of important GA parameters, including the mutation probability, the number of MOFs per generation, and the number of GA generations, on the GA performance. We performed GCMC simulations on-the-fly during the GA procedure to determine the performance of proposed MOFs and optimized their structures using multiple objective functions across different topologies. The GA was able to determine top-performing MOFs balancing CO<sub>2</sub> selectivity versus working capacity and reduced the cost of molecular simulations by a factor of 25 versus brute-force screening of an entire database of structures.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"4585-4593"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04386","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) are promising materials for CO2 capture with the potential to use less energy than current industrial CO2 capture methods. MOFs are highly versatile sorbents, and there is an almost unlimited number of MOFs that could be synthesized. In this work, we used a genetic algorithm (GA) and grand canonical Monte Carlo (GCMC) simulations to efficiently search for high-performing MOFs for CO2 capture. We analyzed the effects of important GA parameters, including the mutation probability, the number of MOFs per generation, and the number of GA generations, on the GA performance. We performed GCMC simulations on-the-fly during the GA procedure to determine the performance of proposed MOFs and optimized their structures using multiple objective functions across different topologies. The GA was able to determine top-performing MOFs balancing CO2 selectivity versus working capacity and reduced the cost of molecular simulations by a factor of 25 versus brute-force screening of an entire database of structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信