Giao Thuy-Quynh Vu, Luan Minh Nguyen, Kim Ngan Nguyen Do, Dieu Linh Tran, Toi Van Vo, Dai Hai Nguyen, Long Binh Vong
{"title":"Preparation of Metal-Polyphenol Modified Zeolitic Imidazolate Framework-8 Nanoparticles for Cancer Drug Delivery.","authors":"Giao Thuy-Quynh Vu, Luan Minh Nguyen, Kim Ngan Nguyen Do, Dieu Linh Tran, Toi Van Vo, Dai Hai Nguyen, Long Binh Vong","doi":"10.1021/acsabm.4c01608","DOIUrl":null,"url":null,"abstract":"<p><p>With the rising incidence of cancer, chemotherapy has become a widely used treatment approach. However, the use of anticancer drugs such as doxorubicin (DOX) poses significant long-term risks due to its nonspecific distribution and severe side effects. Therefore, developing a nanoparticle-based drug delivery system (DDS) that enhances the bioavailability of DOX specifically to cancer cells is crucial while minimizing its side effects on normal cells. This study employed zeolitic imidazolate framework-8 (ZIF-8) as a DDS to encapsulate DOX using a one-pot method. The surface of this system was subsequently modified with a copper-gallic acid (Cu-GA) complex to form the Cu-GA/DOX@ZIF-8 (CGDZ) system. The CGDZ system effectively encapsulates DOX and demonstrates pH-responsive drug release, facilitating controlled drug release in the acidic environment of cancer cells. Furthermore, the Cu-GA coating enhances the biocompatibility of the material, reduces drug toxicity in normal endothelial cells (BAECs) due to the antioxidant feature of modified GA, and maintains the efficacy and intracellular trafficking of DOX in colon cancer cells (C-26). Interestingly, CGDZ nanoparticles showed significantly higher toxicity against cancer cells as compared to unmodified systems and free DOX. Overall, CGDZ exhibited significant <i>in vitro</i> efficacy in targeting cancer cell lines while reducing the toxicity of DOX, offering a novel and effective nanoparticle system for targeted cancer treatment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rising incidence of cancer, chemotherapy has become a widely used treatment approach. However, the use of anticancer drugs such as doxorubicin (DOX) poses significant long-term risks due to its nonspecific distribution and severe side effects. Therefore, developing a nanoparticle-based drug delivery system (DDS) that enhances the bioavailability of DOX specifically to cancer cells is crucial while minimizing its side effects on normal cells. This study employed zeolitic imidazolate framework-8 (ZIF-8) as a DDS to encapsulate DOX using a one-pot method. The surface of this system was subsequently modified with a copper-gallic acid (Cu-GA) complex to form the Cu-GA/DOX@ZIF-8 (CGDZ) system. The CGDZ system effectively encapsulates DOX and demonstrates pH-responsive drug release, facilitating controlled drug release in the acidic environment of cancer cells. Furthermore, the Cu-GA coating enhances the biocompatibility of the material, reduces drug toxicity in normal endothelial cells (BAECs) due to the antioxidant feature of modified GA, and maintains the efficacy and intracellular trafficking of DOX in colon cancer cells (C-26). Interestingly, CGDZ nanoparticles showed significantly higher toxicity against cancer cells as compared to unmodified systems and free DOX. Overall, CGDZ exhibited significant in vitro efficacy in targeting cancer cell lines while reducing the toxicity of DOX, offering a novel and effective nanoparticle system for targeted cancer treatment.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.