{"title":"Natural Product-Inspired Vanadium Pentoxide Nanoparticles Unlock Diabetic Therapeutic Potential: In Vitro and In Silico Evaluation.","authors":"Smriti Bansal, Archana Tomer, Purnima Jain","doi":"10.1021/acsabm.4c01534","DOIUrl":null,"url":null,"abstract":"<p><p>Mimicking the action of insulin and inhibition of specific enzymes involved in glucose metabolism by vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) make it a candidate for diabetes control, but its low absorption, unpredictable change of oxidation state in body passage, and inadequate ability to bond with the intended site limit its activity. Here, okra extract-capped V<sub>2</sub>O<sub>5</sub> nanoparticles (ONPs) are fabricated, which exhibit significant absorptivity, mucoadhesion, and control release by producing vanadate ions as an intermediate. Further, they have been exploited for the antioxidant, anti-inflammatory, and antidiabetic studies. Characterization results demonstrated the presence of okra extract over the surface of nanoparticles. A capped V<sub>2</sub>O<sub>5</sub> nanodrug exhibited enhanced electroactive rough surface area with groove-shaped pores. Fabricated ONPs were exploited for their antioxidant, anti-inflammatory, and antidiabetic properties. Results achieved from in vitro studies and molecular docking indicate its inhibition properties with 80.00 ± 1.73% and 69.93 ± 1.86% efficiency against α-amylase and α-glucosidase, respectively, without affecting the growth of probiotic <i>Bifidobacterium adolescentis</i> and <i>Bifidobacterium bifidum</i> present in the human gut. The cytotoxicity on the HacaT cell line and the glucose uptake assay on the HepG2 cell line make it a promising candidate as an antidiabetic drug.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2027-2051"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Mimicking the action of insulin and inhibition of specific enzymes involved in glucose metabolism by vanadium pentoxide (V2O5) make it a candidate for diabetes control, but its low absorption, unpredictable change of oxidation state in body passage, and inadequate ability to bond with the intended site limit its activity. Here, okra extract-capped V2O5 nanoparticles (ONPs) are fabricated, which exhibit significant absorptivity, mucoadhesion, and control release by producing vanadate ions as an intermediate. Further, they have been exploited for the antioxidant, anti-inflammatory, and antidiabetic studies. Characterization results demonstrated the presence of okra extract over the surface of nanoparticles. A capped V2O5 nanodrug exhibited enhanced electroactive rough surface area with groove-shaped pores. Fabricated ONPs were exploited for their antioxidant, anti-inflammatory, and antidiabetic properties. Results achieved from in vitro studies and molecular docking indicate its inhibition properties with 80.00 ± 1.73% and 69.93 ± 1.86% efficiency against α-amylase and α-glucosidase, respectively, without affecting the growth of probiotic Bifidobacterium adolescentis and Bifidobacterium bifidum present in the human gut. The cytotoxicity on the HacaT cell line and the glucose uptake assay on the HepG2 cell line make it a promising candidate as an antidiabetic drug.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.