Impact of Sandblasting and Plasma Electrolytic Oxidation on Surface Quality of Dental Implants.

Sovremennye tekhnologii v meditsine Pub Date : 2023-01-01 Epub Date: 2023-12-27 DOI:10.17691/stm2023.15.6.05
L I Zaynullina, R G Farrakhov, I A Ramazanov, R Z Khamatdinov, V S Dyuryagin, E V Parfenov
{"title":"Impact of Sandblasting and Plasma Electrolytic Oxidation on Surface Quality of Dental Implants.","authors":"L I Zaynullina, R G Farrakhov, I A Ramazanov, R Z Khamatdinov, V S Dyuryagin, E V Parfenov","doi":"10.17691/stm2023.15.6.05","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium alloys have high biocompatibility, and, therefore, they are widely used in the production of implantable medical devices. Implants, in turn, must have certain surface properties for a positive osseointegration. To improve biocompatibility, as well as cell viability, numerous implant surface modifications have been proposed in order to improve topography, roughness parameters, and surface layer chemical and phase compositions. The most common type of surface treatment for dental implants involves sandblasting with aluminum oxide Al<sub>2</sub>O<sub>3</sub> (corundum). However, aluminum is not a biocompatible element, and it can contribute to development of various diseases. Currently, the method of plasma electrolytic oxidation is being actively developed to ensure formation of a biocompatible TiO<sub>2</sub>-based oxide coating on the surface of titanium implants. <b>The aim of the study</b> was to establish the residual aluminum content in the surface layer of dental implants after sandblasting and subsequent plasma electrolytic oxidation to justify the effective process sequence in serial production of dental implants.</p><p><strong>Materials and methods: </strong>The research was conducted to establish the residual content of aluminum in the surface layer of the NCTi implant subjected to two surface treatment methods: sandblasting and plasma electrolytic oxidation following the sandblasting.</p><p><strong>Results: </strong>Sandblasting with Al<sub>2</sub>O<sub>3</sub> particles leads to fixation of such particles with Al weight fraction of 2.67±0.79% in the surface layer of the implant. Treatment of a dental implant using plasma electrolytic oxidation helps to reduce the Al weight fraction in the surface layer to 0.33±0.08% and significantly improves the implant corrosion resistance with a decrease in corrosion currents by an order of magnitude.</p>","PeriodicalId":520289,"journal":{"name":"Sovremennye tekhnologii v meditsine","volume":"15 6","pages":"40-46"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sovremennye tekhnologii v meditsine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17691/stm2023.15.6.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium alloys have high biocompatibility, and, therefore, they are widely used in the production of implantable medical devices. Implants, in turn, must have certain surface properties for a positive osseointegration. To improve biocompatibility, as well as cell viability, numerous implant surface modifications have been proposed in order to improve topography, roughness parameters, and surface layer chemical and phase compositions. The most common type of surface treatment for dental implants involves sandblasting with aluminum oxide Al2O3 (corundum). However, aluminum is not a biocompatible element, and it can contribute to development of various diseases. Currently, the method of plasma electrolytic oxidation is being actively developed to ensure formation of a biocompatible TiO2-based oxide coating on the surface of titanium implants. The aim of the study was to establish the residual aluminum content in the surface layer of dental implants after sandblasting and subsequent plasma electrolytic oxidation to justify the effective process sequence in serial production of dental implants.

Materials and methods: The research was conducted to establish the residual content of aluminum in the surface layer of the NCTi implant subjected to two surface treatment methods: sandblasting and plasma electrolytic oxidation following the sandblasting.

Results: Sandblasting with Al2O3 particles leads to fixation of such particles with Al weight fraction of 2.67±0.79% in the surface layer of the implant. Treatment of a dental implant using plasma electrolytic oxidation helps to reduce the Al weight fraction in the surface layer to 0.33±0.08% and significantly improves the implant corrosion resistance with a decrease in corrosion currents by an order of magnitude.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信