The Turing heritage for plant biology: all spots and stripes?

Quantitative plant biology Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.1017/qpb.2024.16
Eric Siero, Eva E Deinum
{"title":"The Turing heritage for plant biology: all spots and stripes?","authors":"Eric Siero, Eva E Deinum","doi":"10.1017/qpb.2024.16","DOIUrl":null,"url":null,"abstract":"<p><p>In 'The chemical basis of morphogenesis' (1952), Alan Turing introduced an idea that revolutionised our thinking about pattern formation. He proposed that diffusion could lead to the spontaneous formation of regular patterns. Here, we discuss the impact of Turing's idea on plant science using three well-established examples at different scales: ROP patterning inside single cells, epidermal patterning across several cells and whole vegetation patterns. Also at intermediate levels, e.g., organ spacing, plants look surprisingly regular. But not all regular patterns are Turing patterns, careful observation and prediction of the patterning process-not just the final pattern-is critical to distinguish between mechanisms.</p>","PeriodicalId":101358,"journal":{"name":"Quantitative plant biology","volume":"6 ","pages":"e1"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative plant biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2024.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 'The chemical basis of morphogenesis' (1952), Alan Turing introduced an idea that revolutionised our thinking about pattern formation. He proposed that diffusion could lead to the spontaneous formation of regular patterns. Here, we discuss the impact of Turing's idea on plant science using three well-established examples at different scales: ROP patterning inside single cells, epidermal patterning across several cells and whole vegetation patterns. Also at intermediate levels, e.g., organ spacing, plants look surprisingly regular. But not all regular patterns are Turing patterns, careful observation and prediction of the patterning process-not just the final pattern-is critical to distinguish between mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信