Gulshan Verma, Sonu Sarraf, Aviru K. Basu, Pranay Ranjan and Ankur Gupta
{"title":"Room temperature operated flexible MWCNTs/Nb2O5 hybrid breath sensor for the non-invasive detection of an exhaled diabetes biomarker†","authors":"Gulshan Verma, Sonu Sarraf, Aviru K. Basu, Pranay Ranjan and Ankur Gupta","doi":"10.1039/D4TB02644F","DOIUrl":null,"url":null,"abstract":"<p >Advancements in diabetes management increasingly rely on non-invasive monitoring of biomarkers present in exhaled breath. This study introduces a novel room temperature operated flexible acetone sensing platform, leveraging a hybrid material composed of multi-walled carbon nanotubes (MWCNTs) and niobium oxide (Nb<small><sub>2</sub></small>O<small><sub>5</sub></small>). The platform demonstrates sensitivity and selectivity towards acetone, a prominent biomarker of diabetes, offering promise for real-time health monitoring applications. The sensor exhibited a characteristic feature of fast response (25 s) and recovery times (46 s) at 50 ppm, good selectivity, and stability with a detection limit of 330 ppb. Additionally, the sensor's characteristic features were collected, and four different machine learning (ML) algorithms were applied to visualize and classify the gases with good quantification. Out of all algorithms, the random forest (RF) algorithm demonstrates the best performance. Furthermore, regression modelling was also used to quantitatively predict the gas concentration. In addition, the sensor was shown to distinguish between signals from simulated diabetic and healthy breath samples. These sensing performances indicate that the breath sensor has practical applications that could potentially provide a non-invasive monitoring method for diabetic patients.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 10","pages":" 3460-3470"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02644f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in diabetes management increasingly rely on non-invasive monitoring of biomarkers present in exhaled breath. This study introduces a novel room temperature operated flexible acetone sensing platform, leveraging a hybrid material composed of multi-walled carbon nanotubes (MWCNTs) and niobium oxide (Nb2O5). The platform demonstrates sensitivity and selectivity towards acetone, a prominent biomarker of diabetes, offering promise for real-time health monitoring applications. The sensor exhibited a characteristic feature of fast response (25 s) and recovery times (46 s) at 50 ppm, good selectivity, and stability with a detection limit of 330 ppb. Additionally, the sensor's characteristic features were collected, and four different machine learning (ML) algorithms were applied to visualize and classify the gases with good quantification. Out of all algorithms, the random forest (RF) algorithm demonstrates the best performance. Furthermore, regression modelling was also used to quantitatively predict the gas concentration. In addition, the sensor was shown to distinguish between signals from simulated diabetic and healthy breath samples. These sensing performances indicate that the breath sensor has practical applications that could potentially provide a non-invasive monitoring method for diabetic patients.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices