A novel detoxification strategy of Bombyx mori (Lepidoptera: Bombycidae) to dimethoate based on gut microbiota research.

Chao Tian, Jie Tang, Qingyu Zhu, Xiqian Guo, Qilong Shu, Zhiya Gu, Fanchi Li, Bing Li
{"title":"A novel detoxification strategy of Bombyx mori (Lepidoptera: Bombycidae) to dimethoate based on gut microbiota research.","authors":"Chao Tian, Jie Tang, Qingyu Zhu, Xiqian Guo, Qilong Shu, Zhiya Gu, Fanchi Li, Bing Li","doi":"10.1093/jee/toaf028","DOIUrl":null,"url":null,"abstract":"<p><p>Bombyx mori (L.) (Lepidoptera: Bombycidae) is an important economic insect, and Exorista sorbillans (W.) (Diptera: Tachinidae) is an endoparasitic pest of larval B. mori. Dimethoate is less toxic to B. mori than E. sorbillans and is used in sericulture to controlling E. sorbillans. To investigate the effects of dimethoate treatment on the gut microorganisms and physiological functions of B. mori, 16S rRNA sequencing was used to analyzed the composition and structure of the gut microbiota. This study investigated their role in enhancing silkworm resistance by screening dominant populations after dimethoate treatment. The results indicated that dimethoate did not alter the composition of the dominant gut bacterial groups in silkworm; however, it significantly increased the abundance of the gut bacteria Methylobacterium and Aureimonas, and decreased the abundance of Enterobacterales, Bifidobacterium, Blautia, Collinsella, Faecalibacterium, and Prevotella. Eleven strains of dimethoate-resistant bacteria were selected through in vitro culture, all of which were unable to grow when dimethoate was used as a carbon source. Additionally, a germ-free silkworm model was established to assess detoxifying enzyme activity in the midgut. The results revealed that the gut symbiotic microbiota can enhance dimethoate resistance by increasing detoxification enzyme activity. This study identifies a novel pathway for silkworm resistance to dimethoate based on gut microbiota, providing new insights into the role of symbiotic gut bacteria in insecticide metabolism.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bombyx mori (L.) (Lepidoptera: Bombycidae) is an important economic insect, and Exorista sorbillans (W.) (Diptera: Tachinidae) is an endoparasitic pest of larval B. mori. Dimethoate is less toxic to B. mori than E. sorbillans and is used in sericulture to controlling E. sorbillans. To investigate the effects of dimethoate treatment on the gut microorganisms and physiological functions of B. mori, 16S rRNA sequencing was used to analyzed the composition and structure of the gut microbiota. This study investigated their role in enhancing silkworm resistance by screening dominant populations after dimethoate treatment. The results indicated that dimethoate did not alter the composition of the dominant gut bacterial groups in silkworm; however, it significantly increased the abundance of the gut bacteria Methylobacterium and Aureimonas, and decreased the abundance of Enterobacterales, Bifidobacterium, Blautia, Collinsella, Faecalibacterium, and Prevotella. Eleven strains of dimethoate-resistant bacteria were selected through in vitro culture, all of which were unable to grow when dimethoate was used as a carbon source. Additionally, a germ-free silkworm model was established to assess detoxifying enzyme activity in the midgut. The results revealed that the gut symbiotic microbiota can enhance dimethoate resistance by increasing detoxification enzyme activity. This study identifies a novel pathway for silkworm resistance to dimethoate based on gut microbiota, providing new insights into the role of symbiotic gut bacteria in insecticide metabolism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信