Mitochondria-loading erythrocytes transfer mitochondria to ameliorate inflammatory bone loss

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Shi Cheng , Lu Zhou , Wu-Yin Wang, Meng-Jie Zhang, Qi-Chao Yang, Wen- Da Wang, Kong-Huai Wang, Zhi-Jun Sun, Lu Zhang
{"title":"Mitochondria-loading erythrocytes transfer mitochondria to ameliorate inflammatory bone loss","authors":"Shi Cheng ,&nbsp;Lu Zhou ,&nbsp;Wu-Yin Wang,&nbsp;Meng-Jie Zhang,&nbsp;Qi-Chao Yang,&nbsp;Wen- Da Wang,&nbsp;Kong-Huai Wang,&nbsp;Zhi-Jun Sun,&nbsp;Lu Zhang","doi":"10.1016/j.actbio.2025.02.024","DOIUrl":null,"url":null,"abstract":"<div><div>Inflammatory diseases frequently result in bone loss, a condition for which effective therapeutic interventions are lacking. Mitochondrial transfer and transplantation hold promise in tissue repair and disease treatments. However, the application of mitochondrial transfer in alleviating disorders has been limited due to its uncontrollable nature. Moreover, the key challenge in this field is maintaining the quality of isolated mitochondria (Mito), as dysfunctional Mito can exacerbate disease progression. Therefore, we employ Mito-loading erythrocytes (named MiLE) to achieve maintenance of mitochondrial quality. In addition, MiLE can be cryopreserved, allowing for long-term preservation of mitochondrial quality and facilitating the future application of mitochondrial transfer. In the inflammatory microenvironment, MiLE supplies Mito as well as O<sub>2</sub> to macrophages. By undergoing metabolic reprogramming, MiLE suppresses lipopolysaccharide-induced osteoclast differentiation and promotes macrophage polarization from M1 to M2 phenotype, ultimately ameliorating inflammatory bone destruction. In summary, this work tackles the challenges of uncontrollable mitochondrial transfer and mitochondrial quality maintenance, and offers an opportunity for future exploration of organelle transplantation.</div></div><div><h3>Statement of significance</h3><div>The application of mitochondrial transfer for the alleviation of pathologies has been hindered by the intrinsic limitations in terms of control and selectivity. Furthermore, maintaining mitochondrial integrity and functionality following isolation poses a significant challenge. In a pioneering approach, we develop a method for encapsulating mitochondria within erythrocytes, termed mitochondria-loading erythrocytes (MiLE), which ensures extended mitochondrial functionality and controlled transfer. Within an inflammatory microenvironment, MiLE supplies both mitochondria and O<sub>2</sub> to macrophages. By undergoing metabolic reprogramming, MiLE alleviates lipopolysaccharide-induced osteoclast differentiation and promotes macrophage polarization from M1 to M2 phenotype, ultimately ameliorating inflammatory bone destruction.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 225-239"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125001060","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory diseases frequently result in bone loss, a condition for which effective therapeutic interventions are lacking. Mitochondrial transfer and transplantation hold promise in tissue repair and disease treatments. However, the application of mitochondrial transfer in alleviating disorders has been limited due to its uncontrollable nature. Moreover, the key challenge in this field is maintaining the quality of isolated mitochondria (Mito), as dysfunctional Mito can exacerbate disease progression. Therefore, we employ Mito-loading erythrocytes (named MiLE) to achieve maintenance of mitochondrial quality. In addition, MiLE can be cryopreserved, allowing for long-term preservation of mitochondrial quality and facilitating the future application of mitochondrial transfer. In the inflammatory microenvironment, MiLE supplies Mito as well as O2 to macrophages. By undergoing metabolic reprogramming, MiLE suppresses lipopolysaccharide-induced osteoclast differentiation and promotes macrophage polarization from M1 to M2 phenotype, ultimately ameliorating inflammatory bone destruction. In summary, this work tackles the challenges of uncontrollable mitochondrial transfer and mitochondrial quality maintenance, and offers an opportunity for future exploration of organelle transplantation.

Statement of significance

The application of mitochondrial transfer for the alleviation of pathologies has been hindered by the intrinsic limitations in terms of control and selectivity. Furthermore, maintaining mitochondrial integrity and functionality following isolation poses a significant challenge. In a pioneering approach, we develop a method for encapsulating mitochondria within erythrocytes, termed mitochondria-loading erythrocytes (MiLE), which ensures extended mitochondrial functionality and controlled transfer. Within an inflammatory microenvironment, MiLE supplies both mitochondria and O2 to macrophages. By undergoing metabolic reprogramming, MiLE alleviates lipopolysaccharide-induced osteoclast differentiation and promotes macrophage polarization from M1 to M2 phenotype, ultimately ameliorating inflammatory bone destruction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信