Development of a predictive model for severe peripartum hemorrhage in placenta accreta spectrum cases under neuraxial anesthesia: a multicenter retrospective analysis.

IF 3.1 Q1 OBSTETRICS & GYNECOLOGY
Therapeutic advances in reproductive health Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI:10.1177/26334941251317644
Yanan Li, Liang Li, Xiao Song, Fanqing Meng, Meiling Zhang, Yarong Li, Ran Chu
{"title":"Development of a predictive model for severe peripartum hemorrhage in placenta accreta spectrum cases under neuraxial anesthesia: a multicenter retrospective analysis.","authors":"Yanan Li, Liang Li, Xiao Song, Fanqing Meng, Meiling Zhang, Yarong Li, Ran Chu","doi":"10.1177/26334941251317644","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The placenta accreta spectrum (PAS) represents a significant risk factor for severe postpartum hemorrhage. Recent studies have demonstrated the safety of neuraxial anesthesia (NA) in cesarean delivery (CD) for patients with PAS.</p><p><strong>Objectives: </strong>To evaluate the risk of severe peripartum hemorrhage in patients with PAS who underwent CD under NA.</p><p><strong>Design: </strong>A multicenter retrospective cohort study.</p><p><strong>Methods: </strong>This study analyzed 214 patients diagnosed with PAS. Logistic regression was used to identify factors increasing the risk of severe peripartum hemorrhage. A total of six machine learning (ML) algorithms were employed for model validation.</p><p><strong>Results: </strong>The predictive model includes the following risk factors: age at delivery >33 years (<i>p</i> = 0.004), history of CD >1 (<i>p</i> = 0.020), preoperative HGB ⩽ 100 g/L (<i>p</i> = 0.013), placenta previa classification (<i>p</i> = 0.001), vascular lacunae within the placenta (<i>p</i> = 0.015), and labor duration (<i>p</i> = 0.026). The validation of ML algorithms revealed that the model achieved an accuracy ranging from 0.68 to 0.71, with an area under the receiver operating characteristic curve between 0.75 and 0.79. A nomogram list and web-based calculator were constructed for clinical implementation, and a risk stratification system was established based on model scores.</p><p><strong>Conclusion: </strong>A prenatal risk assessment model was developed to estimate the likelihood of severe peripartum hemorrhage in PAS patients undergoing CD under NA. This model may provide preliminary support for clinicians in tailoring anesthetic management strategies for potentially high-risk cases, but further studies are needed to confirm its clinical utility.</p>","PeriodicalId":75219,"journal":{"name":"Therapeutic advances in reproductive health","volume":"19 ","pages":"26334941251317644"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic advances in reproductive health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26334941251317644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The placenta accreta spectrum (PAS) represents a significant risk factor for severe postpartum hemorrhage. Recent studies have demonstrated the safety of neuraxial anesthesia (NA) in cesarean delivery (CD) for patients with PAS.

Objectives: To evaluate the risk of severe peripartum hemorrhage in patients with PAS who underwent CD under NA.

Design: A multicenter retrospective cohort study.

Methods: This study analyzed 214 patients diagnosed with PAS. Logistic regression was used to identify factors increasing the risk of severe peripartum hemorrhage. A total of six machine learning (ML) algorithms were employed for model validation.

Results: The predictive model includes the following risk factors: age at delivery >33 years (p = 0.004), history of CD >1 (p = 0.020), preoperative HGB ⩽ 100 g/L (p = 0.013), placenta previa classification (p = 0.001), vascular lacunae within the placenta (p = 0.015), and labor duration (p = 0.026). The validation of ML algorithms revealed that the model achieved an accuracy ranging from 0.68 to 0.71, with an area under the receiver operating characteristic curve between 0.75 and 0.79. A nomogram list and web-based calculator were constructed for clinical implementation, and a risk stratification system was established based on model scores.

Conclusion: A prenatal risk assessment model was developed to estimate the likelihood of severe peripartum hemorrhage in PAS patients undergoing CD under NA. This model may provide preliminary support for clinicians in tailoring anesthetic management strategies for potentially high-risk cases, but further studies are needed to confirm its clinical utility.

多中心回顾性分析:建立一种预测轴向麻醉下胎盘增生谱系患者严重围生期出血的模型。
背景:胎盘增生谱(PAS)是严重产后出血的重要危险因素。最近的研究已经证明了神经轴麻醉(NA)在PAS患者剖宫产(CD)中的安全性。目的:评价NA下行CD的PAS患者发生严重围生期出血的风险。设计:一项多中心回顾性队列研究。方法:本研究分析了214例诊断为PAS的患者。采用Logistic回归分析确定围生期严重出血风险增加的因素。总共使用了六种机器学习(ML)算法进行模型验证。结果:预测模型包括以下危险因素:分娩年龄> ~ 33岁(p = 0.004)、CD史>1 (p = 0.020)、术前HGB≥100 g/L (p = 0.013)、前置胎盘分类(p = 0.001)、胎盘内血管腔隙(p = 0.015)、产程(p = 0.026)。ML算法的验证表明,该模型的准确率在0.68 ~ 0.71之间,受试者工作特征曲线下面积在0.75 ~ 0.79之间。构建临床实施的nomogram list和基于web的calculator,并根据模型得分建立风险分层体系。结论:建立了一个产前风险评估模型,以估计在NA下行CD的PAS患者发生严重围产期出血的可能性。该模型可以为临床医生提供初步的支持,为潜在的高风险病例量身定制麻醉管理策略,但需要进一步的研究来证实其临床实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信