{"title":"Inhibition of miMOMP-induced SASP to combat age-related disease.","authors":"Xiaoli Liao, Zhennan Guo, Mouhai He, Yichun Zhang","doi":"10.3389/fragi.2025.1505063","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence, first described in 1961, was initially observed in normal human fibroblasts that ceased proliferating after a finite number of divisions in culture. This process is triggered by various stimuli, including oxidative stress, chromatin modifications and oncogene activation, characterized by irreversible cell-cycle arrest, resistance to apoptosis and the induction of a complex senescent associated secretory phenotype (SASP). Over the past decade, emerging evidence has linked cellular senescence to the aging process and a wide range of chronic age-related diseases. Consequently, research focused on targeting senescence to alleviate or delay age-related disease, referred to as senotherapy, has been conducted rapidly. Therefore, elucidating the mechanisms of cellular senescence is essential for providing practical strategies aimed at addressing this condition.</p>","PeriodicalId":73061,"journal":{"name":"Frontiers in aging","volume":"6 ","pages":"1505063"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814426/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fragi.2025.1505063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular senescence, first described in 1961, was initially observed in normal human fibroblasts that ceased proliferating after a finite number of divisions in culture. This process is triggered by various stimuli, including oxidative stress, chromatin modifications and oncogene activation, characterized by irreversible cell-cycle arrest, resistance to apoptosis and the induction of a complex senescent associated secretory phenotype (SASP). Over the past decade, emerging evidence has linked cellular senescence to the aging process and a wide range of chronic age-related diseases. Consequently, research focused on targeting senescence to alleviate or delay age-related disease, referred to as senotherapy, has been conducted rapidly. Therefore, elucidating the mechanisms of cellular senescence is essential for providing practical strategies aimed at addressing this condition.