{"title":"A conceptual framework for modeling a latching mechanism for cell cycle regulation","authors":"Punit Gandhi , Yangyang Wang","doi":"10.1016/j.mbs.2025.109396","DOIUrl":null,"url":null,"abstract":"<div><div>Two identical van der Pol oscillators with mutual inhibition are considered as a conceptual framework for modeling a latching mechanism for cell cycle regulation. In particular, the oscillators are biased to a latched state in which there is a globally attracting steady-state equilibrium without coupling. The inhibitory coupling induces stable alternating large-amplitude oscillations that model the normal cell cycle. A homoclinic bifurcation within the model is found to be responsible for the transition from normal cell cycling to endocycles in which only one of the two oscillators undergoes large-amplitude oscillations.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"382 ","pages":"Article 109396"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000227","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Two identical van der Pol oscillators with mutual inhibition are considered as a conceptual framework for modeling a latching mechanism for cell cycle regulation. In particular, the oscillators are biased to a latched state in which there is a globally attracting steady-state equilibrium without coupling. The inhibitory coupling induces stable alternating large-amplitude oscillations that model the normal cell cycle. A homoclinic bifurcation within the model is found to be responsible for the transition from normal cell cycling to endocycles in which only one of the two oscillators undergoes large-amplitude oscillations.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.