FASER: a tool for vectorial point spread function simulation with applications in stimulated emission depletion microscopy.

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-02-12 DOI:10.1117/1.NPh.12.1.017801
Johannes Roos, Stéphane Bancelin, U Valentin Nägerl
{"title":"FASER: a tool for vectorial point spread function simulation with applications in stimulated emission depletion microscopy.","authors":"Johannes Roos, Stéphane Bancelin, U Valentin Nägerl","doi":"10.1117/1.NPh.12.1.017801","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce FASER, a software package designed to simulate the excitation point spread functions (PSFs) of microscopes. It is written in Python as a plugin for the open-source platform Napari. Using a full-vectorial computational approach to simulate the electromagnetic fields within the focal region makes precise predictions and allows detailed analyses of excitation PSFs. FASER is intended as a pedagogical tool enabling users to explore the impacts of various geometrical and optical parameters of practical importance on the performance of the microscope. It supports the modeling of complex beam profiles, including donut and bottle-shaped beams, which are commonly used in advanced microscopy techniques such as stimulated emission depletion (STED) microscopy. Through specific simulations and accessible illustrations, we showcase FASER's capabilities in capturing characteristic features of STED microscopy, making it a practical resource for researchers and students in optical microscopy to explore and optimize high-resolution imaging techniques.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 1","pages":"017801"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.1.017801","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce FASER, a software package designed to simulate the excitation point spread functions (PSFs) of microscopes. It is written in Python as a plugin for the open-source platform Napari. Using a full-vectorial computational approach to simulate the electromagnetic fields within the focal region makes precise predictions and allows detailed analyses of excitation PSFs. FASER is intended as a pedagogical tool enabling users to explore the impacts of various geometrical and optical parameters of practical importance on the performance of the microscope. It supports the modeling of complex beam profiles, including donut and bottle-shaped beams, which are commonly used in advanced microscopy techniques such as stimulated emission depletion (STED) microscopy. Through specific simulations and accessible illustrations, we showcase FASER's capabilities in capturing characteristic features of STED microscopy, making it a practical resource for researchers and students in optical microscopy to explore and optimize high-resolution imaging techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信