Efficient pretreatment method for analyzing microplastics in urban road dust containing composite materials.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Kanako Yamamoto, Soyoung Lee, Tomohiro Tobino, Fumiyuki Nakajima
{"title":"Efficient pretreatment method for analyzing microplastics in urban road dust containing composite materials.","authors":"Kanako Yamamoto, Soyoung Lee, Tomohiro Tobino, Fumiyuki Nakajima","doi":"10.1002/wer.70028","DOIUrl":null,"url":null,"abstract":"<p><p>Tire wear particles (TWPs) and road marking paint (RMP) fragments are main sources of composite microplastics (MPs) in urban road dust and contribute significantly to the load of MPs in water environments. However, few studies have investigated the influence of organic decomposition such as cellulolytic enzyme decomposition (EZM) and Fenton (FT), on the abundance and characteristics of composite MPs in the environment. This study aimed to evaluate an organic matter decomposition method suitable for MP analysis using urban road dust containing composite materials, focusing on EZM and FT methods. The EZM has 1.1-4.5 times as high recovery of synthetic polymers as FT based on particle number. The difference in the number of orange particles was thought to be one of the factors behind this. Sodium citrate buffer used in EZM might degrade any components in the RMP-suspected orange particles and reduce the particle density to float in the NaI solution. For black tire-suspected particles, which were detected in large numbers, no significant difference was confirmed between EZM and FT in the number of these particles, but FT methods might affect the proportion of tire material in tire-suspected materials. The EZM method may be useful for quantification of composite MPs and is more suitable for analyzing samples in which there may be many RMP-suspected particles due to the characteristics of the surrounding environment or catchment area. PRACTITIONER POINTS: Tires and road marking paint (RMP) are main sources of composite microplastics (MPs) washed into stormwater from road dust. The cellulolytic enzyme decomposition is useful for analysis of composite MPs and comprehensive understanding of materials in the environment. It is necessary to select an organic matter decomposition method that suits the sample characteristics and research purpose.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70028"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70028","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tire wear particles (TWPs) and road marking paint (RMP) fragments are main sources of composite microplastics (MPs) in urban road dust and contribute significantly to the load of MPs in water environments. However, few studies have investigated the influence of organic decomposition such as cellulolytic enzyme decomposition (EZM) and Fenton (FT), on the abundance and characteristics of composite MPs in the environment. This study aimed to evaluate an organic matter decomposition method suitable for MP analysis using urban road dust containing composite materials, focusing on EZM and FT methods. The EZM has 1.1-4.5 times as high recovery of synthetic polymers as FT based on particle number. The difference in the number of orange particles was thought to be one of the factors behind this. Sodium citrate buffer used in EZM might degrade any components in the RMP-suspected orange particles and reduce the particle density to float in the NaI solution. For black tire-suspected particles, which were detected in large numbers, no significant difference was confirmed between EZM and FT in the number of these particles, but FT methods might affect the proportion of tire material in tire-suspected materials. The EZM method may be useful for quantification of composite MPs and is more suitable for analyzing samples in which there may be many RMP-suspected particles due to the characteristics of the surrounding environment or catchment area. PRACTITIONER POINTS: Tires and road marking paint (RMP) are main sources of composite microplastics (MPs) washed into stormwater from road dust. The cellulolytic enzyme decomposition is useful for analysis of composite MPs and comprehensive understanding of materials in the environment. It is necessary to select an organic matter decomposition method that suits the sample characteristics and research purpose.

含复合材料城市道路粉尘中微塑料分析的高效预处理方法。
轮胎磨损颗粒(TWPs)和道路标线漆碎片(RMP)是城市道路粉尘中复合微塑料(MPs)的主要来源,对水环境中复合微塑料的负荷有重要贡献。然而,很少有研究探讨纤维素酶分解(EZM)和Fenton (FT)等有机分解对环境中复合MPs丰度和特性的影响。本研究以含复合材料的城市道路粉尘为研究对象,以EZM法和FT法为重点,探讨一种适合于MP分析的有机物分解方法。基于颗粒数,EZM的合成聚合物回收率是FT的1.1-4.5倍。橙色颗粒数量的差异被认为是背后的因素之一。在EZM中使用柠檬酸钠缓冲液可以降解疑似rmp的橙色颗粒中的任何成分,降低颗粒密度,使其漂浮在NaI溶液中。对于大量检测到的黑色疑似轮胎颗粒,EZM和FT方法在这些颗粒的数量上没有明显差异,但FT方法可能会影响轮胎材料在疑似轮胎材料中的比例。EZM方法可用于复合MPs的定量,并且由于周围环境或流域的特点,更适合分析可能存在许多rmp可疑颗粒的样品。从业要点:轮胎和道路标线漆(RMP)是复合微塑料(MPs)的主要来源,这些塑料被道路灰尘冲入雨水中。纤维素水解酶的分解有助于复合MPs的分析和对环境中材料的全面了解。选择适合样品特性和研究目的的有机物分解方法是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信