Insights into genetics of floral development in Amborella trichopoda Baill. through genome-wide survey and expression analysis of MADS-Box transcription factors.
{"title":"Insights into genetics of floral development in Amborella trichopoda Baill. through genome-wide survey and expression analysis of MADS-Box transcription factors.","authors":"Sanam Parajuli, Bibek Adhikari, Madhav P Nepal","doi":"10.1038/s41598-025-88880-x","DOIUrl":null,"url":null,"abstract":"<p><p>The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5297"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88880-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.