A PUF-Based Secure Authentication and Key Agreement Scheme for the Internet of Drones.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-02-06 DOI:10.3390/s25030982
Jihye Choi, Seunghwan Son, Deokkyu Kwon, Youngho Park
{"title":"A PUF-Based Secure Authentication and Key Agreement Scheme for the Internet of Drones.","authors":"Jihye Choi, Seunghwan Son, Deokkyu Kwon, Youngho Park","doi":"10.3390/s25030982","DOIUrl":null,"url":null,"abstract":"<p><p>The Internet of Drones (IoD) is an emerging industry that offers convenient services for humans due to the high mobility and flexibility of drones. The IoD substantially enhances human life by enabling diverse drone applications across various domains. However, a malicious adversary can attempt security attacks because communication within an IoD environment is conducted through public channels and because drones are vulnerable to physical attacks. In 2023, Sharma et al. proposed a physical unclonable function (PUF)-based authentication and key agreement (AKA) scheme for the IoD. Regrettably, we discover that their scheme cannot prevent impersonation, stolen verifier, and ephemeral secret leakage (ESL) attacks. Moreover, Sharma et al.'s scheme cannot preserve user untraceability and anonymity. In this paper, we propose a secure and lightweight AKA scheme which addresses the shortcomings of Sharma et al.'s scheme. The proposed scheme has resistance against diverse security attacks, including physical capture attacks on drones, by leveraging a PUF. Furthermore, we utilize lightweight operations such as hash function and XOR operation to accommodate the computational constraints of drones. The security of the proposed scheme is rigorously verified, utilizing \"Burrows-Abadi-Needham (BAN) logic\", \"Real-or-Random (ROR) model\", \"Automated Validation of Internet Security Protocols and Application (AVISPA)\", and informal analysis. Additionally, we compare the security properties, computational cost, communication cost, and energy consumption of the proposed scheme with other related works to evaluate performance. As a result, we determine that our scheme is efficient and well suited for the IoD.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25030982","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Drones (IoD) is an emerging industry that offers convenient services for humans due to the high mobility and flexibility of drones. The IoD substantially enhances human life by enabling diverse drone applications across various domains. However, a malicious adversary can attempt security attacks because communication within an IoD environment is conducted through public channels and because drones are vulnerable to physical attacks. In 2023, Sharma et al. proposed a physical unclonable function (PUF)-based authentication and key agreement (AKA) scheme for the IoD. Regrettably, we discover that their scheme cannot prevent impersonation, stolen verifier, and ephemeral secret leakage (ESL) attacks. Moreover, Sharma et al.'s scheme cannot preserve user untraceability and anonymity. In this paper, we propose a secure and lightweight AKA scheme which addresses the shortcomings of Sharma et al.'s scheme. The proposed scheme has resistance against diverse security attacks, including physical capture attacks on drones, by leveraging a PUF. Furthermore, we utilize lightweight operations such as hash function and XOR operation to accommodate the computational constraints of drones. The security of the proposed scheme is rigorously verified, utilizing "Burrows-Abadi-Needham (BAN) logic", "Real-or-Random (ROR) model", "Automated Validation of Internet Security Protocols and Application (AVISPA)", and informal analysis. Additionally, we compare the security properties, computational cost, communication cost, and energy consumption of the proposed scheme with other related works to evaluate performance. As a result, we determine that our scheme is efficient and well suited for the IoD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信