Tailoring Metal-Oxide Interfaces via Selectively CeO2-Decorated Pd Nanocatalysts with Enhanced Catalytic Performance.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-01-27 DOI:10.3390/nano15030197
Ziwen Liu, Guizhen Zhang, Lijuan Niu, Zaicheng Sun, Zhenguo Li, Hong He
{"title":"Tailoring Metal-Oxide Interfaces via Selectively CeO<sub>2</sub>-Decorated Pd Nanocatalysts with Enhanced Catalytic Performance.","authors":"Ziwen Liu, Guizhen Zhang, Lijuan Niu, Zaicheng Sun, Zhenguo Li, Hong He","doi":"10.3390/nano15030197","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal-oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al<sub>2</sub>O<sub>3</sub>-xCeO<sub>2</sub>) that are selectively decorated by CeO<sub>2</sub>, which form core-shell-like structures and generate more Pd-CeO<sub>2</sub> interfacial sites, so that the three-way catalytic activity of Pd/Al<sub>2</sub>O<sub>3</sub>-xCeO<sub>2</sub> catalysts is obviously significantly enhanced due to more adsorption oxygen at the interface of Pd-CeO<sub>2</sub> and good low-temperature reducibility. At the moment, the Pd/Al<sub>2</sub>O<sub>3</sub>-xCeO<sub>2</sub> catalysts exhibit excellent thermal stability after being calcined at 900 °C for 5 h, owing to the Pd species being highly redispersed on CeO<sub>2</sub> and part of the Pd species being incorporated into the lattice of CeO<sub>2</sub>. This is a major reason for the Pd/Al<sub>2</sub>O<sub>3</sub>-xCeO<sub>2</sub> catalysts to maintain high catalytic activity after aging at high temperatures. It is concluded that the metal-oxide interfaces and the interaction between Pd NPs and CeO<sub>2</sub> are responsible for the excellent catalytic performance and stability of Pd/Al<sub>2</sub>O<sub>3</sub>-xCeO<sub>2</sub> catalysts in three-way reactions.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030197","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal-oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2O3-xCeO2) that are selectively decorated by CeO2, which form core-shell-like structures and generate more Pd-CeO2 interfacial sites, so that the three-way catalytic activity of Pd/Al2O3-xCeO2 catalysts is obviously significantly enhanced due to more adsorption oxygen at the interface of Pd-CeO2 and good low-temperature reducibility. At the moment, the Pd/Al2O3-xCeO2 catalysts exhibit excellent thermal stability after being calcined at 900 °C for 5 h, owing to the Pd species being highly redispersed on CeO2 and part of the Pd species being incorporated into the lattice of CeO2. This is a major reason for the Pd/Al2O3-xCeO2 catalysts to maintain high catalytic activity after aging at high temperatures. It is concluded that the metal-oxide interfaces and the interaction between Pd NPs and CeO2 are responsible for the excellent catalytic performance and stability of Pd/Al2O3-xCeO2 catalysts in three-way reactions.

通过选择性 CeO2 装饰钯纳米催化剂定制金属氧化物界面,提高催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信