Investigation of Thermal Deformation Behavior in Boron Nitride-Reinforced Magnesium Alloy Using Constitutive and Machine Learning Models.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-01-26 DOI:10.3390/nano15030195
Ayoub Elajjani, Yinghao Feng, Wangxi Ni, Sinuo Xu, Chaoyang Sun, Shaochuan Feng
{"title":"Investigation of Thermal Deformation Behavior in Boron Nitride-Reinforced Magnesium Alloy Using Constitutive and Machine Learning Models.","authors":"Ayoub Elajjani, Yinghao Feng, Wangxi Ni, Sinuo Xu, Chaoyang Sun, Shaochuan Feng","doi":"10.3390/nano15030195","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate flow stress prediction is vital for optimizing the manufacturing of lightweight materials under high-temperature conditions. In this study, a boron nitride (BN)-reinforced AZ80 magnesium composite was subjected to hot compression tests at temperatures of 300-400 °C and strain rates ranging from 0.01 to 10 s<sup>-1</sup>. A data-driven Support Vector Regression (SVR) model was developed to predict flow stress based on temperature, strain rate, and strain. Trained on experimental data, the SVR model demonstrated high predictive accuracy, as evidenced by a low mean squared error (MSE), a coefficient of determination (<i>R</i><sup>2</sup>) close to unity, and a minimal average absolute relative error (AARE). Sensitivity analysis revealed that strain rate and temperature exerted the greatest influence on flow stress. By integrating machine learning with experimental observations, this framework enables efficient optimization of thermal deformation, supporting data-driven decision-making in forming processes. The results underscore the potential of combining advanced computational models with real-time experimental data to enhance manufacturing efficiency and improve process control in next-generation lightweight alloys.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15030195","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate flow stress prediction is vital for optimizing the manufacturing of lightweight materials under high-temperature conditions. In this study, a boron nitride (BN)-reinforced AZ80 magnesium composite was subjected to hot compression tests at temperatures of 300-400 °C and strain rates ranging from 0.01 to 10 s-1. A data-driven Support Vector Regression (SVR) model was developed to predict flow stress based on temperature, strain rate, and strain. Trained on experimental data, the SVR model demonstrated high predictive accuracy, as evidenced by a low mean squared error (MSE), a coefficient of determination (R2) close to unity, and a minimal average absolute relative error (AARE). Sensitivity analysis revealed that strain rate and temperature exerted the greatest influence on flow stress. By integrating machine learning with experimental observations, this framework enables efficient optimization of thermal deformation, supporting data-driven decision-making in forming processes. The results underscore the potential of combining advanced computational models with real-time experimental data to enhance manufacturing efficiency and improve process control in next-generation lightweight alloys.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信