Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-01-30 DOI:10.3390/ma18030625
Vanesa Santás-Miguel, Vanesa Lalín-Pousa, Manuel Conde-Cid, Andrés Rodríguez-Seijo, Paula Pérez-Rodríguez
{"title":"Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions.","authors":"Vanesa Santás-Miguel, Vanesa Lalín-Pousa, Manuel Conde-Cid, Andrés Rodríguez-Seijo, Paula Pérez-Rodríguez","doi":"10.3390/ma18030625","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the adsorption and desorption behaviors of phosphorus (P), arsenic (As), fluoride (F), and chromium (Cr) in aqueous solutions on green materials such as cork bark (CB) and pine bark (PB). These materials are characterized by active functional groups and net negative charges on their surfaces and porous structures. The evaluation considers variations in contaminant concentrations (0.01-10 mM) and pH (3.5-12). Cork bark exhibited higher adsorption capacity for As and F, while PB was more effective for P and Cr. Adsorption isotherms followed the Freundlich and Langmuir models, indicating surface heterogeneity and multilayer adsorption for most potentially toxic elements (PTEs). Desorption tests demonstrated low rates, with CB retaining up to 99% of F and 85% of As, and PB achieving up to 86% retention for Cr and 70% for P. The influence of pH was minimal for As, P, and F, but acidic conditions significantly enhanced Cr adsorption, showing similar behavior for both biopowders. These findings suggest that CB and PB biopowders are promising, environmentally friendly biosorbents for the removal of PTEs from aqueous solutions. Their effectiveness varies depending on the specific contaminant. This study highlights the potential of these natural materials for sustainable applications in water treatment and soil remediation.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18030625","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the adsorption and desorption behaviors of phosphorus (P), arsenic (As), fluoride (F), and chromium (Cr) in aqueous solutions on green materials such as cork bark (CB) and pine bark (PB). These materials are characterized by active functional groups and net negative charges on their surfaces and porous structures. The evaluation considers variations in contaminant concentrations (0.01-10 mM) and pH (3.5-12). Cork bark exhibited higher adsorption capacity for As and F, while PB was more effective for P and Cr. Adsorption isotherms followed the Freundlich and Langmuir models, indicating surface heterogeneity and multilayer adsorption for most potentially toxic elements (PTEs). Desorption tests demonstrated low rates, with CB retaining up to 99% of F and 85% of As, and PB achieving up to 86% retention for Cr and 70% for P. The influence of pH was minimal for As, P, and F, but acidic conditions significantly enhanced Cr adsorption, showing similar behavior for both biopowders. These findings suggest that CB and PB biopowders are promising, environmentally friendly biosorbents for the removal of PTEs from aqueous solutions. Their effectiveness varies depending on the specific contaminant. This study highlights the potential of these natural materials for sustainable applications in water treatment and soil remediation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信