Julia Vieira, Raquel Oliveira, Ana Abreu, Marcin Różycki, Tomasz Niemiec, Mateusz Sitarz
{"title":"Thermal Performance of Wood Frame Construction with Phase Change Material in the Brazilian Subtropical Climate.","authors":"Julia Vieira, Raquel Oliveira, Ana Abreu, Marcin Różycki, Tomasz Niemiec, Mateusz Sitarz","doi":"10.3390/ma18030681","DOIUrl":null,"url":null,"abstract":"<p><p>In a Brazilian subtropical climate, Wood Frame construction, valued for sustainability and thermal inertia, is being tested for compatibility with Phase Change Materials (PCMs) to improve thermal performance. This study addresses the lack of research on these technologies in Brazil and evaluates the thermal performance of a single-story Wood Frame housing envelope with and without PCM in Curitiba-PR, located in southern Brazil with Cfb climate classification. Dynamic energy simulation followed ASHRAE Standard 55-2017 criteria for occupant thermal comfort. The results indicated that integrating PCM with thermal insulation (EPS) significantly improved thermal performance, reducing the daily indoor temperature range by up to 6.4 °C and increasing comfortable hours by 20%. However, Wood Frame construction without either BioPCM or EPS proved inadequate in achieving the minimum level of thermal performance required by Brazilian standards. This underscores the importance of evaluating potential users' thermal comfort conditions alongside the building's overall thermal performance. It also emphasizes the need to carefully consider the level of thermal insulation in conjunction with PCM for effective design decisions. Thus, this study promotes the integration of PCM and thermal insulation to enhance thermal comfort and sustainability in Wood Frame constructions in the subtropical climate of Brazil.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18030681","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In a Brazilian subtropical climate, Wood Frame construction, valued for sustainability and thermal inertia, is being tested for compatibility with Phase Change Materials (PCMs) to improve thermal performance. This study addresses the lack of research on these technologies in Brazil and evaluates the thermal performance of a single-story Wood Frame housing envelope with and without PCM in Curitiba-PR, located in southern Brazil with Cfb climate classification. Dynamic energy simulation followed ASHRAE Standard 55-2017 criteria for occupant thermal comfort. The results indicated that integrating PCM with thermal insulation (EPS) significantly improved thermal performance, reducing the daily indoor temperature range by up to 6.4 °C and increasing comfortable hours by 20%. However, Wood Frame construction without either BioPCM or EPS proved inadequate in achieving the minimum level of thermal performance required by Brazilian standards. This underscores the importance of evaluating potential users' thermal comfort conditions alongside the building's overall thermal performance. It also emphasizes the need to carefully consider the level of thermal insulation in conjunction with PCM for effective design decisions. Thus, this study promotes the integration of PCM and thermal insulation to enhance thermal comfort and sustainability in Wood Frame constructions in the subtropical climate of Brazil.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.