{"title":"Enhanced Hydrogen Evolution Reaction Using Biomass-Activated Carbon Nanosheets Derived from Eucalyptus Leaves.","authors":"Sankar Sekar, Atsaya Shanmugam, Gokilapriya Senthilkumar, Kiruthiga Thangasami, Hyun Jung, Youngmin Lee, Sejoon Lee","doi":"10.3390/ma18030670","DOIUrl":null,"url":null,"abstract":"<p><p>Carbonaceous-based metal-free catalysts are promising aspirants for effective electrocatalytic hydrogen generation. Herein, we synthesized mesoporous-activated carbon nanosheets (ELC) from biomass <i>eucalyptus</i> leaves through KOH activation. The microstructure, structural, and textural characteristics of the prepared materials were characterized by FE-SEM, Raman, XRD, and BET measurements. The high temperature (700 °C) KOH-activated ELC nanosheets exhibited an interconnected nanosheet morphology with a large specific surface area (1436 m<sup>2</sup>/g) and high mesoporosity. The ELC-700 catalyst exhibited an excellent electrocatalytic HER performance with a low overpotential (39 mV at 10 mA/cm<sup>2</sup>), excellent durability, and a Trivial Tafel slope (36 mV/dec) in 0.5 M H<sub>2</sub>SO<sub>4</sub> electrolyte. These findings indicate a new approach for developing excellent biomass-derived electrocatalysts for substantially efficient green hydrogen production.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18030670","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonaceous-based metal-free catalysts are promising aspirants for effective electrocatalytic hydrogen generation. Herein, we synthesized mesoporous-activated carbon nanosheets (ELC) from biomass eucalyptus leaves through KOH activation. The microstructure, structural, and textural characteristics of the prepared materials were characterized by FE-SEM, Raman, XRD, and BET measurements. The high temperature (700 °C) KOH-activated ELC nanosheets exhibited an interconnected nanosheet morphology with a large specific surface area (1436 m2/g) and high mesoporosity. The ELC-700 catalyst exhibited an excellent electrocatalytic HER performance with a low overpotential (39 mV at 10 mA/cm2), excellent durability, and a Trivial Tafel slope (36 mV/dec) in 0.5 M H2SO4 electrolyte. These findings indicate a new approach for developing excellent biomass-derived electrocatalysts for substantially efficient green hydrogen production.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.