Diagnosis of microbial keratitis using smartphone-captured images; a deep-learning model.

IF 2.9 Q1 OPHTHALMOLOGY
Mohammad Soleimani, Albert Y Cheung, Amir Rahdar, Artak Kirakosyan, Nicholas Tomaras, Isaiah Lee, Margarita De Alba, Mehdi Aminizade, Kosar Esmaili, Natalia Quiroz-Casian, Mohamad Javad Ahmadi, Siamak Yousefi, Kasra Cheraqpour
{"title":"Diagnosis of microbial keratitis using smartphone-captured images; a deep-learning model.","authors":"Mohammad Soleimani, Albert Y Cheung, Amir Rahdar, Artak Kirakosyan, Nicholas Tomaras, Isaiah Lee, Margarita De Alba, Mehdi Aminizade, Kosar Esmaili, Natalia Quiroz-Casian, Mohamad Javad Ahmadi, Siamak Yousefi, Kasra Cheraqpour","doi":"10.1186/s12348-025-00465-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial keratitis (MK) poses a substantial threat to vision and is the leading cause of corneal blindness. The outcome of MK is heavily reliant on immediate treatment following an accurate diagnosis. The current diagnostics are often hindered by the difficulties faced in low and middle-income countries where there may be a lack of access to ophthalmic units with clinical experts and standardized investigating equipment. Hence, it is crucial to develop new and expeditious diagnostic approaches. This study explores the application of deep learning (DL) in diagnosing and differentiating subtypes of MK using smartphone-captured images.</p><p><strong>Materials and methods: </strong>The dataset comprised 889 cases of bacterial keratitis (BK), fungal keratitis (FK), and acanthamoeba keratitis (AK) collected from 2020 to 2023. A convolutional neural network-based model was developed and trained for classification.</p><p><strong>Results: </strong>The study demonstrates the model's overall classification accuracy of 83.8%, with specific accuracies for AK, BK, and FK at 81.2%, 82.3%, and 86.6%, respectively, with an AUC of 0.92 for the ROC curves.</p><p><strong>Conclusion: </strong>The model exhibits practicality, especially with the ease of image acquisition using smartphones, making it applicable in diverse settings.</p>","PeriodicalId":16600,"journal":{"name":"Journal of Ophthalmic Inflammation and Infection","volume":"15 1","pages":"8"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ophthalmic Inflammation and Infection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12348-025-00465-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Microbial keratitis (MK) poses a substantial threat to vision and is the leading cause of corneal blindness. The outcome of MK is heavily reliant on immediate treatment following an accurate diagnosis. The current diagnostics are often hindered by the difficulties faced in low and middle-income countries where there may be a lack of access to ophthalmic units with clinical experts and standardized investigating equipment. Hence, it is crucial to develop new and expeditious diagnostic approaches. This study explores the application of deep learning (DL) in diagnosing and differentiating subtypes of MK using smartphone-captured images.

Materials and methods: The dataset comprised 889 cases of bacterial keratitis (BK), fungal keratitis (FK), and acanthamoeba keratitis (AK) collected from 2020 to 2023. A convolutional neural network-based model was developed and trained for classification.

Results: The study demonstrates the model's overall classification accuracy of 83.8%, with specific accuracies for AK, BK, and FK at 81.2%, 82.3%, and 86.6%, respectively, with an AUC of 0.92 for the ROC curves.

Conclusion: The model exhibits practicality, especially with the ease of image acquisition using smartphones, making it applicable in diverse settings.

应用智能手机图像诊断细菌性角膜炎一个深度学习模型。
背景:微生物性角膜炎(MK)对视力构成重大威胁,是角膜失明的主要原因。MK的结果在很大程度上依赖于准确诊断后的立即治疗。目前的诊断常常受到低收入和中等收入国家面临的困难的阻碍,这些国家可能缺乏获得配备临床专家和标准化检查设备的眼科单位的机会。因此,开发新的快速诊断方法至关重要。本研究探讨了深度学习(DL)在使用智能手机拍摄的图像诊断和区分MK亚型中的应用。材料和方法:该数据集包括2020年至2023年收集的889例细菌性角膜炎(BK)、真菌性角膜炎(FK)和棘阿米巴角膜炎(AK)。开发并训练了基于卷积神经网络的分类模型。结果:该模型的总体分类准确率为83.8%,其中AK、BK、FK的特异性准确率分别为81.2%、82.3%、86.6%,ROC曲线的AUC为0.92。结论:该模型展示了实用性,特别是使用智能手机轻松获取图像,使其适用于各种设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
3.40%
发文量
39
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信