Effect of Undercut Bolt Anchor Depth on Failure Cone Geometry: A Numerical FEM Analysis and Experimental Verification.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-02-04 DOI:10.3390/ma18030686
Józef Jonak, Andrzej Wójcik, Robert Karpiński, Kamil Jonak
{"title":"Effect of Undercut Bolt Anchor Depth on Failure Cone Geometry: A Numerical FEM Analysis and Experimental Verification.","authors":"Józef Jonak, Andrzej Wójcik, Robert Karpiński, Kamil Jonak","doi":"10.3390/ma18030686","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined the influence of the effective embedment depth <i>h</i><sub>ef</sub> of undercut anchors and the diameter of their heads on the formation of the so-called cone failure angle α. Cone failure formation during simulated anchor pull-out tests was analyzed numerically using the Finite Element Method (FEM) with the ABAQUS software and the XFEM algorithm. The analysis was conducted for three sizes of undercut anchor heads and four embedment depths. The numerical analysis results were compared with field test results obtained during pull-out tests of anchors installed in a rock medium (sandstone). Good agreement was observed between the numerical and field test results. The results of the numerical study are highly consistent with those obtained during the field survey. Moreover, they align closely with findings from previous numerical studies conducted by members of the research team, as presented in earlier publications. For the assumed simulation and field test conditions (sedimentary rocks, gray sandstone), no clear correlation was found between the embedment depth or the anchor head diameter and the value of the cone failure angle in the initial phase of the failure zone development. This result contrasts with certain findings reported in the literature. Many existing studies on anchor bolts focus on material properties or load-bearing capacity, but lack an in-depth analysis of how anchor depth influences the geometry of the failure cone. This research addresses that gap, providing valuable insights with practical implications for design codes and safety evaluations.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18030686","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined the influence of the effective embedment depth hef of undercut anchors and the diameter of their heads on the formation of the so-called cone failure angle α. Cone failure formation during simulated anchor pull-out tests was analyzed numerically using the Finite Element Method (FEM) with the ABAQUS software and the XFEM algorithm. The analysis was conducted for three sizes of undercut anchor heads and four embedment depths. The numerical analysis results were compared with field test results obtained during pull-out tests of anchors installed in a rock medium (sandstone). Good agreement was observed between the numerical and field test results. The results of the numerical study are highly consistent with those obtained during the field survey. Moreover, they align closely with findings from previous numerical studies conducted by members of the research team, as presented in earlier publications. For the assumed simulation and field test conditions (sedimentary rocks, gray sandstone), no clear correlation was found between the embedment depth or the anchor head diameter and the value of the cone failure angle in the initial phase of the failure zone development. This result contrasts with certain findings reported in the literature. Many existing studies on anchor bolts focus on material properties or load-bearing capacity, but lack an in-depth analysis of how anchor depth influences the geometry of the failure cone. This research addresses that gap, providing valuable insights with practical implications for design codes and safety evaluations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信