Hui Zhang, Lu Feng, Weibo Mao, Quanming Liu, Liang Zhao, Hong Zhang
{"title":"Impact of Yttrium Oxide on the Synthesis and Sintering Properties of Cordierite-Mullite Composite Ceramics.","authors":"Hui Zhang, Lu Feng, Weibo Mao, Quanming Liu, Liang Zhao, Hong Zhang","doi":"10.3390/ma18030687","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance the mechanical properties and high-temperature performance of cordierite-mullite composite ceramics, yttrium oxide (Y<sub>2</sub>O<sub>3</sub>), a rare earth metal oxide, was employed as a sintering aid to fabricate these composites via in situ synthesis and non-pressure sintering. This study systematically investigated the formation mechanisms of the cordierite and mullite phases and examined the effects of yttrium oxide on the densification behavior, mechanical properties, volumetric stability, and thermal shock resistance. The results indicate that incorporating yttrium oxide (1.5-6.0 wt%) not only promoted the formation of the cordierite phase but also refined the microstructure and enhanced the thermal shock stability at a sintering temperature of 1350 °C. An optimal addition of 3 wt% yttrium oxide ensures that the primary phases are cordierite and mullite, with a microstructure characterized by uniformly distributed micropores, hexagonal short-columnar cordierite, and interlocking rod-like mullite, thereby significantly improving both the mechanical properties and thermal shock stability. Specifically, the room-temperature compressive strength increased by 121%, the flexural strength increased by 177%, and, after three thermal shock cycles at 1100 °C, the retention rates for compressive and flexural strengths were 87.66% and 71.01%, respectively. This research provides a critical foundation for enhancing the mechanical properties and high-temperature service performance of cordierite-mullite saggers used in lithium battery cathode materials.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820845/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18030687","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the mechanical properties and high-temperature performance of cordierite-mullite composite ceramics, yttrium oxide (Y2O3), a rare earth metal oxide, was employed as a sintering aid to fabricate these composites via in situ synthesis and non-pressure sintering. This study systematically investigated the formation mechanisms of the cordierite and mullite phases and examined the effects of yttrium oxide on the densification behavior, mechanical properties, volumetric stability, and thermal shock resistance. The results indicate that incorporating yttrium oxide (1.5-6.0 wt%) not only promoted the formation of the cordierite phase but also refined the microstructure and enhanced the thermal shock stability at a sintering temperature of 1350 °C. An optimal addition of 3 wt% yttrium oxide ensures that the primary phases are cordierite and mullite, with a microstructure characterized by uniformly distributed micropores, hexagonal short-columnar cordierite, and interlocking rod-like mullite, thereby significantly improving both the mechanical properties and thermal shock stability. Specifically, the room-temperature compressive strength increased by 121%, the flexural strength increased by 177%, and, after three thermal shock cycles at 1100 °C, the retention rates for compressive and flexural strengths were 87.66% and 71.01%, respectively. This research provides a critical foundation for enhancing the mechanical properties and high-temperature service performance of cordierite-mullite saggers used in lithium battery cathode materials.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.