The role of precursor coverage in the synthesis and substrate transfer of graphene nanoribbons.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Rimah Darawish, Oliver Braun, Klaus Müllen, Michel Calame, Pascal Ruffieux, Roman Fasel, Gabriela Borin Barin
{"title":"The role of precursor coverage in the synthesis and substrate transfer of graphene nanoribbons.","authors":"Rimah Darawish, Oliver Braun, Klaus Müllen, Michel Calame, Pascal Ruffieux, Roman Fasel, Gabriela Borin Barin","doi":"10.1039/d5na00017c","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene nanoribbons (GNRs) with atomically precise widths and edge topologies have well-defined band gaps that depend on ribbon dimensions, making them ideal for room-temperature switching applications like field-effect transistors (FETs). For effective device integration, it is crucial to optimize growth conditions to maximize GNR length and, consequently, device yield. Equally important is establishing device integration and monitoring strategies that maintain GNR quality during the transition from growth to device fabrication. Here, we investigate the growth and alignment of 9-atom-wide armchair graphene nanoribbons (9-AGNRs) on a vicinal gold substrate, Au(788), with varying molecular precursor doses (PD) and, therefore, different resulting GNR coverages. Our investigation reveals that GNR growth location on Au(788) substrate is coverage-dependent. Scanning tunneling microscopy shows a strong correlation between GNR length evolution and both PD and GNR growth location. Employing Raman spectroscopy, samples with eight different PDs were analyzed. GNR alignment improves with length, achieving near-perfect alignment with an average length of ∼40 nm for GNRs growing solely at the Au(788) step edges. To fully exploit GNR properties in device architectures, GNRs need to be transferred from their metallic growth substrate to semiconducting or insulating substrates. Upon transfer, samples with higher PD present systematically better alignment preservation and less surface disorder, attributed to reduced GNR mobility during the transfer process. Importantly, PD also affects the substrate transfer success rate, with higher success rates observed for samples with higher GNR coverages (77%) compared to lower GNR coverages (53%). Our findings characterize the important relationship between precursor dose, GNR length, alignment quality, and surface disorder during GNR growth and upon substrate transfer, offering crucial insights for the further development of GNR-based nanoelectronic devices.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00017c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene nanoribbons (GNRs) with atomically precise widths and edge topologies have well-defined band gaps that depend on ribbon dimensions, making them ideal for room-temperature switching applications like field-effect transistors (FETs). For effective device integration, it is crucial to optimize growth conditions to maximize GNR length and, consequently, device yield. Equally important is establishing device integration and monitoring strategies that maintain GNR quality during the transition from growth to device fabrication. Here, we investigate the growth and alignment of 9-atom-wide armchair graphene nanoribbons (9-AGNRs) on a vicinal gold substrate, Au(788), with varying molecular precursor doses (PD) and, therefore, different resulting GNR coverages. Our investigation reveals that GNR growth location on Au(788) substrate is coverage-dependent. Scanning tunneling microscopy shows a strong correlation between GNR length evolution and both PD and GNR growth location. Employing Raman spectroscopy, samples with eight different PDs were analyzed. GNR alignment improves with length, achieving near-perfect alignment with an average length of ∼40 nm for GNRs growing solely at the Au(788) step edges. To fully exploit GNR properties in device architectures, GNRs need to be transferred from their metallic growth substrate to semiconducting or insulating substrates. Upon transfer, samples with higher PD present systematically better alignment preservation and less surface disorder, attributed to reduced GNR mobility during the transfer process. Importantly, PD also affects the substrate transfer success rate, with higher success rates observed for samples with higher GNR coverages (77%) compared to lower GNR coverages (53%). Our findings characterize the important relationship between precursor dose, GNR length, alignment quality, and surface disorder during GNR growth and upon substrate transfer, offering crucial insights for the further development of GNR-based nanoelectronic devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信