{"title":"Earthworms and arbuscular mycorrhizal fungi improve salt tolerance in maize through symplastic pathways.","authors":"Binglei Wang, Mingxuan Xiao, Jia Cao, Chong Wang","doi":"10.1093/jxb/eraf057","DOIUrl":null,"url":null,"abstract":"<p><p>Symplastic pathways involving plasma membrane H+-ATPases and Na+/H+ antiporters maintain sodium (Na+) homeostasis in the symplastic pathways and protect plant functions under salt stress. In this study, we characterised the effects of earthworms and arbuscular mycorrhizal fungi (AMF) on Na+ absorption and transport in roots. Measurements of root Na+ content, plasma membrane H+-ATPase and Na+/H+ antiporter and antioxidant enzyme activities were performed together with transcriptome analysis. The addition of earthworms and AMF under saline conditions decreased the accumulation of Na+ in maize roots and significantly increased the root K:Na ratios, as well as increasing the levels of transcripts encoding plasma membrane H+-ATPases, Na+/H+ antiporters, antioxidant enzymes and proteins involved in nitrogen and phosphorus uptake under saline conditions. The transcript changes induced by earthworms and AMF indicate that abscisic acid mediates the effects on salt tolerance. Taken together, these findings suggest that earthworms and AMF improve the salt tolerance of maize seedlings through improved symplastic pathways.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf057","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Symplastic pathways involving plasma membrane H+-ATPases and Na+/H+ antiporters maintain sodium (Na+) homeostasis in the symplastic pathways and protect plant functions under salt stress. In this study, we characterised the effects of earthworms and arbuscular mycorrhizal fungi (AMF) on Na+ absorption and transport in roots. Measurements of root Na+ content, plasma membrane H+-ATPase and Na+/H+ antiporter and antioxidant enzyme activities were performed together with transcriptome analysis. The addition of earthworms and AMF under saline conditions decreased the accumulation of Na+ in maize roots and significantly increased the root K:Na ratios, as well as increasing the levels of transcripts encoding plasma membrane H+-ATPases, Na+/H+ antiporters, antioxidant enzymes and proteins involved in nitrogen and phosphorus uptake under saline conditions. The transcript changes induced by earthworms and AMF indicate that abscisic acid mediates the effects on salt tolerance. Taken together, these findings suggest that earthworms and AMF improve the salt tolerance of maize seedlings through improved symplastic pathways.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.