Fluorescence Enhanced Water-Soluble Ruthenium Complex: Advancing Precision in Cr(VI) Detection and Quantification.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Pooja Rajagopalan, Sowmiya Saravanan, Mohan Ranganathan, Kalarical Janardhanan Sreeram, Sathyaraj Gopal
{"title":"Fluorescence Enhanced Water-Soluble Ruthenium Complex: Advancing Precision in Cr(VI) Detection and Quantification.","authors":"Pooja Rajagopalan, Sowmiya Saravanan, Mohan Ranganathan, Kalarical Janardhanan Sreeram, Sathyaraj Gopal","doi":"10.1007/s10895-025-04150-z","DOIUrl":null,"url":null,"abstract":"<p><p>The environment and human health are both at risk from the heavy metal chromium (VI), which is extremely toxic and carcinogenic. Chromium (VI) in various matrices must be accurately and quickly detected for both public safety and regulatory compliance. This paper describes the design and development of a novel fluorescence detector suitable for the sensitive and selective quantification of chromium (VI) ions. Utilizing the special qualities of a properly selected fluorophore with high sensitivity and selectivity toward chromium (VI), the suggested ruthenium metal-based fluorescence detector makes use of these advantages. Ruthenium (II) complex of composition [Ru(bpy)<sub>2</sub>(PhDORi)]Cl<sub>2</sub> bpy 2,2'-bipyridine, PhDORi (2S,3R)-4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-butane-1,2,3-triol was synthesized. Characterizing the produced chemical has involved analytical and spectroscopic approaches. This complex displayed a broad metal-to-ligand charge transfer band at ~ 457 nm in aqueous solution. Ru(II) complex undergo relatively reversible one-electron oxidation and reduction involving the Ru(II)/Ru(III), according to cyclic voltammetry investigations. In an aqueous solution, the complex exhibits intense fluorescence when the molecule is excited at the MLCT band. The complex exhibit selectivity towards chromate/dichromate anions in the aqueous solution. With ppm to ppb concentration and a linear response across a 10<sup>5</sup>fold concentration range, concentration-dependent emission quenching of the fluorophore by the chromate ions was shown.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04150-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The environment and human health are both at risk from the heavy metal chromium (VI), which is extremely toxic and carcinogenic. Chromium (VI) in various matrices must be accurately and quickly detected for both public safety and regulatory compliance. This paper describes the design and development of a novel fluorescence detector suitable for the sensitive and selective quantification of chromium (VI) ions. Utilizing the special qualities of a properly selected fluorophore with high sensitivity and selectivity toward chromium (VI), the suggested ruthenium metal-based fluorescence detector makes use of these advantages. Ruthenium (II) complex of composition [Ru(bpy)2(PhDORi)]Cl2 bpy 2,2'-bipyridine, PhDORi (2S,3R)-4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-butane-1,2,3-triol was synthesized. Characterizing the produced chemical has involved analytical and spectroscopic approaches. This complex displayed a broad metal-to-ligand charge transfer band at ~ 457 nm in aqueous solution. Ru(II) complex undergo relatively reversible one-electron oxidation and reduction involving the Ru(II)/Ru(III), according to cyclic voltammetry investigations. In an aqueous solution, the complex exhibits intense fluorescence when the molecule is excited at the MLCT band. The complex exhibit selectivity towards chromate/dichromate anions in the aqueous solution. With ppm to ppb concentration and a linear response across a 105fold concentration range, concentration-dependent emission quenching of the fluorophore by the chromate ions was shown.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信