{"title":"Identification of cell-free circulating epigenomic biomarkers for early diagnosis and response to therapies in breast cancer patients.","authors":"Pooja Ratre, Suresh Thareja, Pradyumna Kumar Mishra","doi":"10.1016/bs.ircmb.2024.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of breast cancer presents a significant global health challenge, highlighting the urgent need for improved diagnostic and treatment monitoring methods. The non-invasive nature of cell-free circulating epigenomic biomarkers, such as methylated DNA (metDNA) and microRNAs (miRNAs), offers a reassuring approach to identifying breast cancer patients in the early stages and assessing their response to therapy. This approach holds great promise for diagnosis and treatment evaluation, prioritizing patient comfort and well-being. Cell-free circulating metDNA and miRNAs are released into the bloodstream from dying tumor cells through apoptosis and necrosis, carrying tumor-specific genetic and epigenetic changes. These changes encompass alterations in DNA methylation patterns, are pivotal in regulating gene expression, and are frequently disrupted in cancer. The interplay between these processes and the dynamic release of epigenomic biomarkers provides a real-time snapshot of the genetic and epigenetic features of the tumor. Integrating the analysis of metDNA and miRNA biomarkers into clinical practice can facilitate the early detection of breast cancer and improve the precision of treatment monitoring. By tracking changes in these biological markers, healthcare professionals can make informed decisions regarding modifications to therapy, ultimately enhancing patient outcomes. Gaining insights into the underlying mechanisms of cell-free circulating epigenomic biomarkers offers a groundbreaking approach to diagnosing and treating breast cancer.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":"391 ","pages":"95-134"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2024.10.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of breast cancer presents a significant global health challenge, highlighting the urgent need for improved diagnostic and treatment monitoring methods. The non-invasive nature of cell-free circulating epigenomic biomarkers, such as methylated DNA (metDNA) and microRNAs (miRNAs), offers a reassuring approach to identifying breast cancer patients in the early stages and assessing their response to therapy. This approach holds great promise for diagnosis and treatment evaluation, prioritizing patient comfort and well-being. Cell-free circulating metDNA and miRNAs are released into the bloodstream from dying tumor cells through apoptosis and necrosis, carrying tumor-specific genetic and epigenetic changes. These changes encompass alterations in DNA methylation patterns, are pivotal in regulating gene expression, and are frequently disrupted in cancer. The interplay between these processes and the dynamic release of epigenomic biomarkers provides a real-time snapshot of the genetic and epigenetic features of the tumor. Integrating the analysis of metDNA and miRNA biomarkers into clinical practice can facilitate the early detection of breast cancer and improve the precision of treatment monitoring. By tracking changes in these biological markers, healthcare professionals can make informed decisions regarding modifications to therapy, ultimately enhancing patient outcomes. Gaining insights into the underlying mechanisms of cell-free circulating epigenomic biomarkers offers a groundbreaking approach to diagnosing and treating breast cancer.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.