Role of 11β-Hydroxysteroid Dehydrogenase and Mineralocorticoid Receptor on Alzheimer's Disease Onset: A Systematic Review.

IF 5.6 2区 生物学
Mariangela Di Vincenzo, Pamela Pellegrino, Genny Schiappa, Anna Campanati, Valerio Del Vescovo, Silvia Piccirillo, Patrizia Ambrogini, Giorgio Arnaldi, Monia Orciani
{"title":"Role of 11β-Hydroxysteroid Dehydrogenase and Mineralocorticoid Receptor on Alzheimer's Disease Onset: A Systematic Review.","authors":"Mariangela Di Vincenzo, Pamela Pellegrino, Genny Schiappa, Anna Campanati, Valerio Del Vescovo, Silvia Piccirillo, Patrizia Ambrogini, Giorgio Arnaldi, Monia Orciani","doi":"10.3390/ijms26031357","DOIUrl":null,"url":null,"abstract":"<p><p>The role of 11β-HSD1 in Alzheimer's disease (AD) has garnered significant attention due to its involvement in glucocorticoid metabolism, neuroinflammation, and cognitive decline. This review explores the current understanding of 11β-HSD1 in AD, examining genetic, preclinical, and clinical research. Genetic studies have identified 11β-HSD1 polymorphisms that may influence AD risk, although findings remain inconsistent. Mechanistically, 11β-HSD1 promotes neurodegeneration through the dysregulation of glucocorticoid activity, contributing to hippocampal atrophy, amyloid plaque formation, and tau pathology. Preclinical studies have shown that 11β-HSD1 inhibitors offer neuroprotective effects, including enhanced cognitive function, reduced inflammation, and improved mitochondrial activity. However, clinical trials, including those involving ABT-384 and Xanamem, have produced mixed results, with no substantial cognitive improvements despite effective enzyme inhibition. These inconsistencies highlight the complexity of AD and the challenges in translating preclinical findings into clinical outcomes. Moreover, while 11β-HSD1 inhibition holds therapeutic potential, other strategies targeting neuroinflammation, autophagy, and glucocorticoid signaling are also being explored. Ongoing research is focusing on optimizing 11β-HSD1 inhibitors, identifying biomarkers for patient selection, and investigating combination therapies to enhance treatment efficacy. Ultimately, 11β-HSD1's role in AD presents a promising therapeutic target, but further studies are required to fully understand its potential in managing the disease.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 3","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26031357","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The role of 11β-HSD1 in Alzheimer's disease (AD) has garnered significant attention due to its involvement in glucocorticoid metabolism, neuroinflammation, and cognitive decline. This review explores the current understanding of 11β-HSD1 in AD, examining genetic, preclinical, and clinical research. Genetic studies have identified 11β-HSD1 polymorphisms that may influence AD risk, although findings remain inconsistent. Mechanistically, 11β-HSD1 promotes neurodegeneration through the dysregulation of glucocorticoid activity, contributing to hippocampal atrophy, amyloid plaque formation, and tau pathology. Preclinical studies have shown that 11β-HSD1 inhibitors offer neuroprotective effects, including enhanced cognitive function, reduced inflammation, and improved mitochondrial activity. However, clinical trials, including those involving ABT-384 and Xanamem, have produced mixed results, with no substantial cognitive improvements despite effective enzyme inhibition. These inconsistencies highlight the complexity of AD and the challenges in translating preclinical findings into clinical outcomes. Moreover, while 11β-HSD1 inhibition holds therapeutic potential, other strategies targeting neuroinflammation, autophagy, and glucocorticoid signaling are also being explored. Ongoing research is focusing on optimizing 11β-HSD1 inhibitors, identifying biomarkers for patient selection, and investigating combination therapies to enhance treatment efficacy. Ultimately, 11β-HSD1's role in AD presents a promising therapeutic target, but further studies are required to fully understand its potential in managing the disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信