Ugur Akcal, Ivan Georgiev Raikov, Ekaterina Dmitrievna Gribkova, Anwesa Choudhuri, Seung Hyun Kim, Mattia Gazzola, Rhanor Gillette, Ivan Soltesz, Girish Chowdhary
{"title":"LoCS-Net: Localizing convolutional spiking neural network for fast visual place recognition.","authors":"Ugur Akcal, Ivan Georgiev Raikov, Ekaterina Dmitrievna Gribkova, Anwesa Choudhuri, Seung Hyun Kim, Mattia Gazzola, Rhanor Gillette, Ivan Soltesz, Girish Chowdhary","doi":"10.3389/fnbot.2024.1490267","DOIUrl":null,"url":null,"abstract":"<p><p>Visual place recognition (VPR) is the ability to recognize locations in a physical environment based only on visual inputs. It is a challenging task due to perceptual aliasing, viewpoint and appearance variations and complexity of dynamic scenes. Despite promising demonstrations, many state-of-the-art (SOTA) VPR approaches based on artificial neural networks (ANNs) suffer from computational inefficiency. However, spiking neural networks (SNNs) implemented on neuromorphic hardware are reported to have remarkable potential for more efficient solutions computationally. Still, training SOTA SNNs for VPR is often intractable on large and diverse datasets, and they typically demonstrate poor real-time operation performance. To address these shortcomings, we developed an end-to-end convolutional SNN model for VPR that leverages backpropagation for tractable training. Rate-based approximations of leaky integrate-and-fire (LIF) neurons are employed during training, which are then replaced with spiking LIF neurons during inference. The proposed method significantly outperforms existing SOTA SNNs on challenging datasets like Nordland and Oxford RobotCar, achieving 78.6% precision at 100% recall on the Nordland dataset (compared to 73.0% from the current SOTA) and 45.7% on the Oxford RobotCar dataset (compared to 20.2% from the current SOTA). Our approach offers a simpler training pipeline while yielding significant improvements in both training and inference times compared to SOTA SNNs for VPR. Hardware-in-the-loop tests using Intel's neuromorphic USB form factor, Kapoho Bay, show that our on-chip spiking models for VPR trained via the ANN-to-SNN conversion strategy continue to outperform their SNN counterparts, despite a slight but noticeable decrease in performance when transitioning from off-chip to on-chip, while offering significant energy efficiency. The results highlight the outstanding rapid prototyping and real-world deployment capabilities of this approach, showing it to be a substantial step toward more prevalent SNN-based real-world robotics solutions.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1490267"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1490267","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Visual place recognition (VPR) is the ability to recognize locations in a physical environment based only on visual inputs. It is a challenging task due to perceptual aliasing, viewpoint and appearance variations and complexity of dynamic scenes. Despite promising demonstrations, many state-of-the-art (SOTA) VPR approaches based on artificial neural networks (ANNs) suffer from computational inefficiency. However, spiking neural networks (SNNs) implemented on neuromorphic hardware are reported to have remarkable potential for more efficient solutions computationally. Still, training SOTA SNNs for VPR is often intractable on large and diverse datasets, and they typically demonstrate poor real-time operation performance. To address these shortcomings, we developed an end-to-end convolutional SNN model for VPR that leverages backpropagation for tractable training. Rate-based approximations of leaky integrate-and-fire (LIF) neurons are employed during training, which are then replaced with spiking LIF neurons during inference. The proposed method significantly outperforms existing SOTA SNNs on challenging datasets like Nordland and Oxford RobotCar, achieving 78.6% precision at 100% recall on the Nordland dataset (compared to 73.0% from the current SOTA) and 45.7% on the Oxford RobotCar dataset (compared to 20.2% from the current SOTA). Our approach offers a simpler training pipeline while yielding significant improvements in both training and inference times compared to SOTA SNNs for VPR. Hardware-in-the-loop tests using Intel's neuromorphic USB form factor, Kapoho Bay, show that our on-chip spiking models for VPR trained via the ANN-to-SNN conversion strategy continue to outperform their SNN counterparts, despite a slight but noticeable decrease in performance when transitioning from off-chip to on-chip, while offering significant energy efficiency. The results highlight the outstanding rapid prototyping and real-world deployment capabilities of this approach, showing it to be a substantial step toward more prevalent SNN-based real-world robotics solutions.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.