Decoding HIV-associated neurocognitive disorders: a new perspective from multimodal connectomics.

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY
Frontiers in Neurology Pub Date : 2025-01-29 eCollection Date: 2025-01-01 DOI:10.3389/fneur.2025.1467175
Zhongkai Zhou, Wei Wang, Hui Li, Ying Shi, Lingling Zhao, Yibo Lu, Xingchen Wei, Hongjun Li
{"title":"Decoding HIV-associated neurocognitive disorders: a new perspective from multimodal connectomics.","authors":"Zhongkai Zhou, Wei Wang, Hui Li, Ying Shi, Lingling Zhao, Yibo Lu, Xingchen Wei, Hongjun Li","doi":"10.3389/fneur.2025.1467175","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, HIV-associated neurocognitive disorders (HAND) remains one of the major challenges faced by people living with HIV (PLWH). HAND involves the vulnerability of neural circuits caused by synaptic degeneration and abnormal synaptic pruning. In recent years, connectomics has been gradually applied to HAND research as a cutting-edge method for describing the structural and functional connectivity patterns of the brain, to further elucidate the specific mechanisms underlying these neural circuit vulnerabilities. Using multimodal neuroimaging techniques such as diffusion tensor imaging (DTI), structural magnetic resonance imaging (sMRI), and resting-state functional magnetic resonance imaging (rs-fMRI), researchers can detail the connectome network changes in the brains of PLWH. These technologies offer potential biomarkers for the early diagnosis, prognosis, and treatment monitoring of HAND, while also providing new avenues for personalized prediction of cognitive status. Here, we start with the pathogenesis and risk factors of HAND, providing a comprehensive review of the basic concepts of unimodal and multimodal macro connectomics and related graph theory methods, and we review the latest progress in HAND connectomics research. We emphasize the use of connectomics to identify specific disease patterns of HIV-associated neurodegeneration and discuss the potential research directions and challenges in understanding these diseases from a connectomics perspective.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"16 ","pages":"1467175"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2025.1467175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, HIV-associated neurocognitive disorders (HAND) remains one of the major challenges faced by people living with HIV (PLWH). HAND involves the vulnerability of neural circuits caused by synaptic degeneration and abnormal synaptic pruning. In recent years, connectomics has been gradually applied to HAND research as a cutting-edge method for describing the structural and functional connectivity patterns of the brain, to further elucidate the specific mechanisms underlying these neural circuit vulnerabilities. Using multimodal neuroimaging techniques such as diffusion tensor imaging (DTI), structural magnetic resonance imaging (sMRI), and resting-state functional magnetic resonance imaging (rs-fMRI), researchers can detail the connectome network changes in the brains of PLWH. These technologies offer potential biomarkers for the early diagnosis, prognosis, and treatment monitoring of HAND, while also providing new avenues for personalized prediction of cognitive status. Here, we start with the pathogenesis and risk factors of HAND, providing a comprehensive review of the basic concepts of unimodal and multimodal macro connectomics and related graph theory methods, and we review the latest progress in HAND connectomics research. We emphasize the use of connectomics to identify specific disease patterns of HIV-associated neurodegeneration and discuss the potential research directions and challenges in understanding these diseases from a connectomics perspective.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信