Junze Yuan, Songyi Lin, Kun Liu, Fujun Guo, Zhijie Bao
{"title":"Effect of Low-Density Lipoprotein (LDL) and High-Density Lipoprotein (HDL) on Frozen Gelation of Egg Yolk.","authors":"Junze Yuan, Songyi Lin, Kun Liu, Fujun Guo, Zhijie Bao","doi":"10.3390/foods14030522","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the roles of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in the gelatinization behavior of egg yolk, as well as the underlying mechanisms of action. This research examined the rheological properties, moisture distribution, and structural characteristics of a system containing reconstituted egg yolk components during the freezing process. The results indicated that increasing the concentration of LDL and HDL in the egg yolk system enhanced the apparent viscosity of egg yolk following a freeze-thaw treatment. Specifically, as the LDL and HDL content increased, <i>G</i>' and <i>G</i>\" values increased significantly, whereas tanδ values decreased significantly and <i>l*</i> values declined. These findings suggest that both LDL and HDL are critical contributors to the gelatinization process of egg yolk. Furthermore, as the concentrations of LDL and HDL in the system increased, the amount of fixed water also rose, while the bound and free water content decreased. This observation implies that LDL and HDL facilitate water migration during the freezing of egg yolk. The increase in fluorescence intensity observed in the fluorescence spectra indicates a greater exposure of tyrosine residues on the protein surface, an enhancement of surface hydrophobicity, and a modification of protein conformation. Fluorescence inverted microscopy revealed that elevated levels of LDL and HDL in the system led to increased structural damage to the protein due to freezing, which subsequently promoted the aggregation of yolk proteins. This suggests that both LDL and HDL undergo aggregation during gelation. In egg yolk, LDL and HDL are essential for gel formation during the freezing of liquid egg yolk and play critical roles in both protein structure and water migration. Of the two lipoproteins, HDL has a more pronounced effect on gel formation during liquid egg yolk freezing. This study investigates the key substances involved in the gelatinization of egg yolk, providing a reference for further improvements in egg yolk gelatinization during freezing.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14030522","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the roles of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in the gelatinization behavior of egg yolk, as well as the underlying mechanisms of action. This research examined the rheological properties, moisture distribution, and structural characteristics of a system containing reconstituted egg yolk components during the freezing process. The results indicated that increasing the concentration of LDL and HDL in the egg yolk system enhanced the apparent viscosity of egg yolk following a freeze-thaw treatment. Specifically, as the LDL and HDL content increased, G' and G" values increased significantly, whereas tanδ values decreased significantly and l* values declined. These findings suggest that both LDL and HDL are critical contributors to the gelatinization process of egg yolk. Furthermore, as the concentrations of LDL and HDL in the system increased, the amount of fixed water also rose, while the bound and free water content decreased. This observation implies that LDL and HDL facilitate water migration during the freezing of egg yolk. The increase in fluorescence intensity observed in the fluorescence spectra indicates a greater exposure of tyrosine residues on the protein surface, an enhancement of surface hydrophobicity, and a modification of protein conformation. Fluorescence inverted microscopy revealed that elevated levels of LDL and HDL in the system led to increased structural damage to the protein due to freezing, which subsequently promoted the aggregation of yolk proteins. This suggests that both LDL and HDL undergo aggregation during gelation. In egg yolk, LDL and HDL are essential for gel formation during the freezing of liquid egg yolk and play critical roles in both protein structure and water migration. Of the two lipoproteins, HDL has a more pronounced effect on gel formation during liquid egg yolk freezing. This study investigates the key substances involved in the gelatinization of egg yolk, providing a reference for further improvements in egg yolk gelatinization during freezing.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds