Synergistic Antioxidant and Cytoprotective Effects of Thunbergia laurifolia Lindl and Zingiber officinale Extracts Against PM2.5-Induced Oxidative Stress in A549 and HepG2 Cells.
{"title":"Synergistic Antioxidant and Cytoprotective Effects of <i>Thunbergia laurifolia</i> Lindl and <i>Zingiber officinale</i> Extracts Against PM2.5-Induced Oxidative Stress in A549 and HepG2 Cells.","authors":"Chattip Sunthrarak, Kakanang Posridee, Parinya Noisa, Soon-Mi Shim, Siwatt Thaiudom, Anant Oonsivilai, Ratchadaporn Oonsivilai","doi":"10.3390/foods14030517","DOIUrl":null,"url":null,"abstract":"<p><p>PM2.5, a fine particulate matter, poses considerable health risks. When inhaled, PM2.5 can deeply penetrate the lungs, triggering respiratory issues such as pneumonia and bronchitis, aggravating heart and lung conditions, increasing the risk of lung cancer, causing cardiovascular problems, and affecting the nervous, immune, and reproductive systems. This study investigated the protective effects of the combination extract (CRGE) of <i>Thunbergia laurifolia</i> Lindl. (Rang Chuet) water extract (RWE), and <i>Zingiber officinale</i> (ginger) ethanol extract (GEE) against PM2.5-induced oxidative stress in A549 and HepG2 cells. CRGE exhibited superior cytoprotective effects compared to the single extracts (RWE and GEE) by significantly reducing PM2.5-induced cytotoxicity and reactive oxygen species production while enhancing antioxidant enzyme activity. To investigate the effects of PM2.5 exposure on cellular responses, gene expression analysis was conducted on a panel of antioxidant enzymes (heme oxygenase 1, superoxide dismutase, catalase, and glutathione peroxidase), the phase II detoxification enzyme NQO1, and the inflammatory markers interleukin (IL)-6 and IL-8 using the A549 and HepG2 cell lines. CRGE treatment effectively reversed the PM2.5-mediated changes in gene expression in both cell lines, suggesting that it may help restore cellular antioxidant defense mechanisms and mitigate PM2.5-induced oxidative stress. This study showed that CRGE holds promise as a natural antioxidant and cytoprotective agent against PM2.5-induced oxidative stress. Further studies are required to investigate the underlying mechanisms and confirm the efficacy of CRGE in vivo.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14030517","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PM2.5, a fine particulate matter, poses considerable health risks. When inhaled, PM2.5 can deeply penetrate the lungs, triggering respiratory issues such as pneumonia and bronchitis, aggravating heart and lung conditions, increasing the risk of lung cancer, causing cardiovascular problems, and affecting the nervous, immune, and reproductive systems. This study investigated the protective effects of the combination extract (CRGE) of Thunbergia laurifolia Lindl. (Rang Chuet) water extract (RWE), and Zingiber officinale (ginger) ethanol extract (GEE) against PM2.5-induced oxidative stress in A549 and HepG2 cells. CRGE exhibited superior cytoprotective effects compared to the single extracts (RWE and GEE) by significantly reducing PM2.5-induced cytotoxicity and reactive oxygen species production while enhancing antioxidant enzyme activity. To investigate the effects of PM2.5 exposure on cellular responses, gene expression analysis was conducted on a panel of antioxidant enzymes (heme oxygenase 1, superoxide dismutase, catalase, and glutathione peroxidase), the phase II detoxification enzyme NQO1, and the inflammatory markers interleukin (IL)-6 and IL-8 using the A549 and HepG2 cell lines. CRGE treatment effectively reversed the PM2.5-mediated changes in gene expression in both cell lines, suggesting that it may help restore cellular antioxidant defense mechanisms and mitigate PM2.5-induced oxidative stress. This study showed that CRGE holds promise as a natural antioxidant and cytoprotective agent against PM2.5-induced oxidative stress. Further studies are required to investigate the underlying mechanisms and confirm the efficacy of CRGE in vivo.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds