Zhuo-Ma Dawa, Ting Zhai, Chuan-Chuan Liu, Hai-Ning Fan
{"title":"Efficacy and safety of pseudolaric acid B against <i>Echinococcus multilocularis in vitro</i> and in a murine infection model.","authors":"Zhuo-Ma Dawa, Ting Zhai, Chuan-Chuan Liu, Hai-Ning Fan","doi":"10.3389/fmed.2025.1503472","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Alveolar echinococcosis (AE) is a chronic zoonotic disease caused by the larvae of the <i>Echinococcus multilocularis</i> (<i>E. multilocularis</i>). The current chemotherapy for AE relies on albendazole and mebendazole, which exhibit only parasitostatic rather than parasiticidal effects. Therefore, there is a need to find new anti-Echinococcosis drugs. Pseudolaric acid B (PAB) has been described to have strong antiparasitic effects. However, the in-depth mechanism by which PAB acts against <i>E. multilocularis</i> remains unclear.</p><p><strong>Methods: </strong>To evaluate the effect of a PAB intervention on protoscoleces, metacestode vesicles and germinal cells in <i>E. multilocularis in vitro</i>. In addition, the effects of PAB on T lymphocyte and collagen synthesis were evaluated after PAB administration in a mouse model.</p><p><strong>Results: </strong>Metacestode vesicles and germinal cells were successfully cultured, and specific genes were amplified via RT-PCR to identify the protoscoleces, vesicles, and germinal cells as the sources of <i>E. multilocularis</i>. <i>In vitro</i> studies have demonstrated that PAB exhibits dose- and concentration-dependent cytotoxicity against <i>E. multilocularis</i> protoscoleces. Scanning electron microscopy revealed that the microvilli structure of the protoscolex was destroyed and the rostellar hooks had fallen off. PAB induced. The release of PGI from the metacestode vesicles, leading to the structural destruction of the inner surfaces. PAB suppressed the proliferation of germinal cells. After PAB treatment, the serum and the host tissue surrounding the metacestodes IFN-<i>γ</i> levels were upregulated and the IL-4 and IL-10 levels was downregulated. After PAB treatment, the levels of CD4<sup>+</sup> T lymphocytes increased and the levels of CD8<sup>+</sup> T lymphocytes decreased in the host tissue surrounding the metacestodes and the spleen. The proportions of the Th1 and Th17 cell subpopulations were increased and the proportion of Th2 cell and Treg cell subpopulations was decreased in the host tissue surrounding the metacestodes. Additionally, collagen deposition was increased after PAB treatment. PAB suppressed the expression of matrix metalloproteinases (MMPs 1, 2, 3, 9, 13) and the activation of the PI3K/AKT signaling pathway in the host tissue surrounding the metacestodes.</p><p><strong>Conclusion: </strong>PAB has a significant killing effect on <i>E. multilocularis</i>, suggesting that it is a potential candidate for the treatment of AE.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1503472"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1503472","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Alveolar echinococcosis (AE) is a chronic zoonotic disease caused by the larvae of the Echinococcus multilocularis (E. multilocularis). The current chemotherapy for AE relies on albendazole and mebendazole, which exhibit only parasitostatic rather than parasiticidal effects. Therefore, there is a need to find new anti-Echinococcosis drugs. Pseudolaric acid B (PAB) has been described to have strong antiparasitic effects. However, the in-depth mechanism by which PAB acts against E. multilocularis remains unclear.
Methods: To evaluate the effect of a PAB intervention on protoscoleces, metacestode vesicles and germinal cells in E. multilocularis in vitro. In addition, the effects of PAB on T lymphocyte and collagen synthesis were evaluated after PAB administration in a mouse model.
Results: Metacestode vesicles and germinal cells were successfully cultured, and specific genes were amplified via RT-PCR to identify the protoscoleces, vesicles, and germinal cells as the sources of E. multilocularis. In vitro studies have demonstrated that PAB exhibits dose- and concentration-dependent cytotoxicity against E. multilocularis protoscoleces. Scanning electron microscopy revealed that the microvilli structure of the protoscolex was destroyed and the rostellar hooks had fallen off. PAB induced. The release of PGI from the metacestode vesicles, leading to the structural destruction of the inner surfaces. PAB suppressed the proliferation of germinal cells. After PAB treatment, the serum and the host tissue surrounding the metacestodes IFN-γ levels were upregulated and the IL-4 and IL-10 levels was downregulated. After PAB treatment, the levels of CD4+ T lymphocytes increased and the levels of CD8+ T lymphocytes decreased in the host tissue surrounding the metacestodes and the spleen. The proportions of the Th1 and Th17 cell subpopulations were increased and the proportion of Th2 cell and Treg cell subpopulations was decreased in the host tissue surrounding the metacestodes. Additionally, collagen deposition was increased after PAB treatment. PAB suppressed the expression of matrix metalloproteinases (MMPs 1, 2, 3, 9, 13) and the activation of the PI3K/AKT signaling pathway in the host tissue surrounding the metacestodes.
Conclusion: PAB has a significant killing effect on E. multilocularis, suggesting that it is a potential candidate for the treatment of AE.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world