Lijuan Yang, Qiumei Dong, Da Lin, Chunfang Tian, Xinliang Lü
{"title":"MUNet: a novel framework for accurate brain tumor segmentation combining UNet and mamba networks.","authors":"Lijuan Yang, Qiumei Dong, Da Lin, Chunfang Tian, Xinliang Lü","doi":"10.3389/fncom.2025.1513059","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumors are one of the major health threats to humans, and their complex pathological features and anatomical structures make accurate segmentation and detection crucial. However, existing models based on Transformers and Convolutional Neural Networks (CNNs) still have limitations in medical image processing. While Transformers are proficient in capturing global features, they suffer from high computational complexity and require large amounts of data for training. On the other hand, CNNs perform well in extracting local features but have limited performance when handling global information. To address these issues, this paper proposes a novel network framework, MUNet, which combines the advantages of UNet and Mamba, specifically designed for brain tumor segmentation. MUNet introduces the SD-SSM module, which effectively captures both global and local features of the image through selective scanning and state-space modeling, significantly improving segmentation accuracy. Additionally, we design the SD-Conv structure, which reduces feature redundancy without increasing model parameters, further enhancing computational efficiency. Finally, we propose a new loss function that combines mIoU loss, Dice loss, and Boundary loss, which improves segmentation overlap, similarity, and boundary accuracy from multiple perspectives. Experimental results show that, on the BraTS2020 dataset, MUNet achieves DSC values of 0.835, 0.915, and 0.823 for enhancing tumor (ET), whole tumor (WT), and tumor core (TC), respectively, and Hausdorff95 scores of 2.421, 3.755, and 6.437. On the BraTS2018 dataset, MUNet achieves DSC values of 0.815, 0.901, and 0.815, with Hausdorff95 scores of 4.389, 6.243, and 6.152, all outperforming existing methods and achieving significant performance improvements. Furthermore, when validated on the independent LGG dataset, MUNet demonstrated excellent generalization ability, proving its effectiveness in various medical imaging scenarios. The code is available at https://github.com/Dalin1977331/MUNet.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1513059"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1513059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brain tumors are one of the major health threats to humans, and their complex pathological features and anatomical structures make accurate segmentation and detection crucial. However, existing models based on Transformers and Convolutional Neural Networks (CNNs) still have limitations in medical image processing. While Transformers are proficient in capturing global features, they suffer from high computational complexity and require large amounts of data for training. On the other hand, CNNs perform well in extracting local features but have limited performance when handling global information. To address these issues, this paper proposes a novel network framework, MUNet, which combines the advantages of UNet and Mamba, specifically designed for brain tumor segmentation. MUNet introduces the SD-SSM module, which effectively captures both global and local features of the image through selective scanning and state-space modeling, significantly improving segmentation accuracy. Additionally, we design the SD-Conv structure, which reduces feature redundancy without increasing model parameters, further enhancing computational efficiency. Finally, we propose a new loss function that combines mIoU loss, Dice loss, and Boundary loss, which improves segmentation overlap, similarity, and boundary accuracy from multiple perspectives. Experimental results show that, on the BraTS2020 dataset, MUNet achieves DSC values of 0.835, 0.915, and 0.823 for enhancing tumor (ET), whole tumor (WT), and tumor core (TC), respectively, and Hausdorff95 scores of 2.421, 3.755, and 6.437. On the BraTS2018 dataset, MUNet achieves DSC values of 0.815, 0.901, and 0.815, with Hausdorff95 scores of 4.389, 6.243, and 6.152, all outperforming existing methods and achieving significant performance improvements. Furthermore, when validated on the independent LGG dataset, MUNet demonstrated excellent generalization ability, proving its effectiveness in various medical imaging scenarios. The code is available at https://github.com/Dalin1977331/MUNet.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro