An immunocompetent mouse model revealed that congenital Zika virus infection disrupted hippocampal function by activating autophagy.

IF 8.4 2区 医学 Q1 IMMUNOLOGY
Emerging Microbes & Infections Pub Date : 2025-12-01 Epub Date: 2025-02-28 DOI:10.1080/22221751.2025.2465327
Wei Yang, Zhan-Zhan Bian, Zhe Li, Yi-Teng Zhang, Li-Bo Liu, Jia-Tong Chang, Dan Li, Pei-Gang Wang, Jing An, Wei Wang
{"title":"An immunocompetent mouse model revealed that congenital Zika virus infection disrupted hippocampal function by activating autophagy.","authors":"Wei Yang, Zhan-Zhan Bian, Zhe Li, Yi-Teng Zhang, Li-Bo Liu, Jia-Tong Chang, Dan Li, Pei-Gang Wang, Jing An, Wei Wang","doi":"10.1080/22221751.2025.2465327","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital Zika virus (ZIKV) infection significantly affects neurological development in infants and subsequently induces neurodevelopmental abnormality symptoms; however, the potential mechanism is still unknown. Therefore, in order to effectively intervene in neurodevelopmental abnormalities in infected infants, it is necessary to identify the main brain regions affected by congenital infection. In this study, we constructed a congenital ZIKV-infected murine model using immunocompetent human STAT2 knock-in mice, which presented long-term neurodevelopmental abnormalities with abnormal neurodevelopmental symptoms. We found that the hippocampus, which regulates cognitive behaviour and processes spatial information and navigation, was the main brain region affected by congenital infection and that hippocampal cells were more prone to autophagy during the growth period of these mice at the transcriptional and pathological levels. These findings highlighted that congenital ZIKV infection could interrupt hippocampal function by activating autophagy, thus providing a theoretical basis for the clinical treatment of congenital ZIKV-infected infants.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2465327"},"PeriodicalIF":8.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873970/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2025.2465327","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Congenital Zika virus (ZIKV) infection significantly affects neurological development in infants and subsequently induces neurodevelopmental abnormality symptoms; however, the potential mechanism is still unknown. Therefore, in order to effectively intervene in neurodevelopmental abnormalities in infected infants, it is necessary to identify the main brain regions affected by congenital infection. In this study, we constructed a congenital ZIKV-infected murine model using immunocompetent human STAT2 knock-in mice, which presented long-term neurodevelopmental abnormalities with abnormal neurodevelopmental symptoms. We found that the hippocampus, which regulates cognitive behaviour and processes spatial information and navigation, was the main brain region affected by congenital infection and that hippocampal cells were more prone to autophagy during the growth period of these mice at the transcriptional and pathological levels. These findings highlighted that congenital ZIKV infection could interrupt hippocampal function by activating autophagy, thus providing a theoretical basis for the clinical treatment of congenital ZIKV-infected infants.

免疫功能小鼠模型显示先天性寨卡病毒感染通过激活自噬破坏海马功能。
先天性寨卡病毒(ZIKV)感染显著影响婴儿神经发育,并随后诱发神经发育异常症状;然而,潜在的机制尚不清楚。因此,为了有效干预感染婴儿的神经发育异常,有必要确定受先天性感染影响的主要脑区。在本研究中,我们使用具有免疫功能的人STAT2敲入小鼠构建了先天性zikv感染小鼠模型,小鼠表现为长期神经发育异常,神经发育症状异常。我们发现,先天性感染影响的主要脑区是调节认知行为、处理空间信息和导航的海马区,在这些小鼠的生长期间,海马细胞在转录和病理水平上更容易发生自噬。这些发现提示先天性寨卡病毒感染可通过激活自噬来中断海马功能,从而为先天性寨卡病毒感染婴儿的临床治疗提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Emerging Microbes & Infections
Emerging Microbes & Infections IMMUNOLOGY-MICROBIOLOGY
CiteScore
26.20
自引率
2.30%
发文量
276
审稿时长
20 weeks
期刊介绍: Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses. The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries. This journal addresses topics of critical biological and clinical importance, including but not limited to: - Epidemic surveillance - Clinical manifestations - Diagnosis and management - Cellular and molecular pathogenesis - Innate and acquired immune responses between emerging microbes and their hosts - Drug discovery - Vaccine development research Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信