Explainable AI for Bipolar Disorder Diagnosis Using Hjorth Parameters.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Mehrnaz Saghab Torbati, Ahmad Zandbagleh, Mohammad Reza Daliri, Amirmasoud Ahmadi, Reza Rostami, Reza Kazemi
{"title":"Explainable AI for Bipolar Disorder Diagnosis Using Hjorth Parameters.","authors":"Mehrnaz Saghab Torbati, Ahmad Zandbagleh, Mohammad Reza Daliri, Amirmasoud Ahmadi, Reza Rostami, Reza Kazemi","doi":"10.3390/diagnostics15030316","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Despite the prevalence and severity of bipolar disorder (BD), current diagnostic approaches remain largely subjective. This study presents an automatic diagnostic framework using electroencephalography (EEG)-derived Hjorth parameters (activity, mobility, and complexity), aiming to establish objective neurophysiological markers for BD detection and provide insights into its underlying neural mechanisms. <b>Methods:</b> Using resting-state eyes-closed EEG data collected from 20 BD patients and 20 healthy controls (HCs), we developed a novel diagnostic approach based on Hjorth parameters extracted across multiple frequency bands. We employed a rigorous leave-one-subject-out cross-validation strategy to ensure robust, subject-independent assessment, combined with explainable artificial intelligence (XAI) to identify the most discriminative neural features. <b>Results:</b> Our approach achieved remarkable classification accuracy (92.05%), with the activity Hjorth parameters from beta and gamma frequency bands emerging as the most discriminative features. XAI analysis revealed that anterior brain regions in these higher frequency bands contributed most significantly to BD detection, providing new insights into the neurophysiological markers of BD. <b>Conclusions:</b> This study demonstrates the exceptional diagnostic utility of Hjorth parameters, particularly in higher frequency ranges and anterior brain regions, for BD detection. Our findings not only establish a promising framework for automated BD diagnosis but also offer valuable insights into the neurophysiological basis of bipolar and related disorders. The robust performance and interpretability of our approach suggest its potential as a clinical tool for objective BD diagnosis.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15030316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite the prevalence and severity of bipolar disorder (BD), current diagnostic approaches remain largely subjective. This study presents an automatic diagnostic framework using electroencephalography (EEG)-derived Hjorth parameters (activity, mobility, and complexity), aiming to establish objective neurophysiological markers for BD detection and provide insights into its underlying neural mechanisms. Methods: Using resting-state eyes-closed EEG data collected from 20 BD patients and 20 healthy controls (HCs), we developed a novel diagnostic approach based on Hjorth parameters extracted across multiple frequency bands. We employed a rigorous leave-one-subject-out cross-validation strategy to ensure robust, subject-independent assessment, combined with explainable artificial intelligence (XAI) to identify the most discriminative neural features. Results: Our approach achieved remarkable classification accuracy (92.05%), with the activity Hjorth parameters from beta and gamma frequency bands emerging as the most discriminative features. XAI analysis revealed that anterior brain regions in these higher frequency bands contributed most significantly to BD detection, providing new insights into the neurophysiological markers of BD. Conclusions: This study demonstrates the exceptional diagnostic utility of Hjorth parameters, particularly in higher frequency ranges and anterior brain regions, for BD detection. Our findings not only establish a promising framework for automated BD diagnosis but also offer valuable insights into the neurophysiological basis of bipolar and related disorders. The robust performance and interpretability of our approach suggest its potential as a clinical tool for objective BD diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信