Mehrnaz Saghab Torbati, Ahmad Zandbagleh, Mohammad Reza Daliri, Amirmasoud Ahmadi, Reza Rostami, Reza Kazemi
{"title":"Explainable AI for Bipolar Disorder Diagnosis Using Hjorth Parameters.","authors":"Mehrnaz Saghab Torbati, Ahmad Zandbagleh, Mohammad Reza Daliri, Amirmasoud Ahmadi, Reza Rostami, Reza Kazemi","doi":"10.3390/diagnostics15030316","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Despite the prevalence and severity of bipolar disorder (BD), current diagnostic approaches remain largely subjective. This study presents an automatic diagnostic framework using electroencephalography (EEG)-derived Hjorth parameters (activity, mobility, and complexity), aiming to establish objective neurophysiological markers for BD detection and provide insights into its underlying neural mechanisms. <b>Methods:</b> Using resting-state eyes-closed EEG data collected from 20 BD patients and 20 healthy controls (HCs), we developed a novel diagnostic approach based on Hjorth parameters extracted across multiple frequency bands. We employed a rigorous leave-one-subject-out cross-validation strategy to ensure robust, subject-independent assessment, combined with explainable artificial intelligence (XAI) to identify the most discriminative neural features. <b>Results:</b> Our approach achieved remarkable classification accuracy (92.05%), with the activity Hjorth parameters from beta and gamma frequency bands emerging as the most discriminative features. XAI analysis revealed that anterior brain regions in these higher frequency bands contributed most significantly to BD detection, providing new insights into the neurophysiological markers of BD. <b>Conclusions:</b> This study demonstrates the exceptional diagnostic utility of Hjorth parameters, particularly in higher frequency ranges and anterior brain regions, for BD detection. Our findings not only establish a promising framework for automated BD diagnosis but also offer valuable insights into the neurophysiological basis of bipolar and related disorders. The robust performance and interpretability of our approach suggest its potential as a clinical tool for objective BD diagnosis.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15030316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite the prevalence and severity of bipolar disorder (BD), current diagnostic approaches remain largely subjective. This study presents an automatic diagnostic framework using electroencephalography (EEG)-derived Hjorth parameters (activity, mobility, and complexity), aiming to establish objective neurophysiological markers for BD detection and provide insights into its underlying neural mechanisms. Methods: Using resting-state eyes-closed EEG data collected from 20 BD patients and 20 healthy controls (HCs), we developed a novel diagnostic approach based on Hjorth parameters extracted across multiple frequency bands. We employed a rigorous leave-one-subject-out cross-validation strategy to ensure robust, subject-independent assessment, combined with explainable artificial intelligence (XAI) to identify the most discriminative neural features. Results: Our approach achieved remarkable classification accuracy (92.05%), with the activity Hjorth parameters from beta and gamma frequency bands emerging as the most discriminative features. XAI analysis revealed that anterior brain regions in these higher frequency bands contributed most significantly to BD detection, providing new insights into the neurophysiological markers of BD. Conclusions: This study demonstrates the exceptional diagnostic utility of Hjorth parameters, particularly in higher frequency ranges and anterior brain regions, for BD detection. Our findings not only establish a promising framework for automated BD diagnosis but also offer valuable insights into the neurophysiological basis of bipolar and related disorders. The robust performance and interpretability of our approach suggest its potential as a clinical tool for objective BD diagnosis.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.