Do-Kyeong Lee, Jae-Sung Choi, Seong-Jun Choi, Min-Hyung Choi, Min Hong
{"title":"Classification of Chronic Obstructive Pulmonary Disease (COPD) Through Respiratory Pattern Analysis.","authors":"Do-Kyeong Lee, Jae-Sung Choi, Seong-Jun Choi, Min-Hyung Choi, Min Hong","doi":"10.3390/diagnostics15030313","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> This study proposes a classification system for predicting chronic obstructive pulmonary disease (COPD) patients and non-patients based on image and text data. <b>Method:</b> This study measured the respiratory volume based on thermal images, stored the respiratory data, and derived features related to respiratory patterns, including the total respiratory volume, average distance between expirations, average distance between inspirations, and total respiratory rate. The data for each feature were stored in text format. The four features saved as text were scaled using Z-score normalization and expressed as scores through weighted summation. These scores were compared to a threshold based on the ROC curve values, classifying participants as patients if the score exceeded the threshold and as non-patients if it fell below. <b>Results:</b> The proposed method achieved an accuracy of 82.5%. To validate the proposed approach, precision, recall, and F1-score were utilized, confirming the high classification performance of the model. The results of this study demonstrate the potential for future applications in non-contact medical examinations and diagnoses of respiratory diseases.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15030313","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study proposes a classification system for predicting chronic obstructive pulmonary disease (COPD) patients and non-patients based on image and text data. Method: This study measured the respiratory volume based on thermal images, stored the respiratory data, and derived features related to respiratory patterns, including the total respiratory volume, average distance between expirations, average distance between inspirations, and total respiratory rate. The data for each feature were stored in text format. The four features saved as text were scaled using Z-score normalization and expressed as scores through weighted summation. These scores were compared to a threshold based on the ROC curve values, classifying participants as patients if the score exceeded the threshold and as non-patients if it fell below. Results: The proposed method achieved an accuracy of 82.5%. To validate the proposed approach, precision, recall, and F1-score were utilized, confirming the high classification performance of the model. The results of this study demonstrate the potential for future applications in non-contact medical examinations and diagnoses of respiratory diseases.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.