Influence of feeding time on daily rhythms of locomotor activity, clock genes, and epigenetic mechanisms in the liver and hypothalamus of the European sea bass (Dicentrarchus labrax).
Elisa Samorì, Inmaculada Rodríguez, José Antonio Oliver, Francisco Javier Sánchez-Vázquez, José Fernando López-Olmeda
{"title":"Influence of feeding time on daily rhythms of locomotor activity, clock genes, and epigenetic mechanisms in the liver and hypothalamus of the European sea bass (Dicentrarchus labrax).","authors":"Elisa Samorì, Inmaculada Rodríguez, José Antonio Oliver, Francisco Javier Sánchez-Vázquez, José Fernando López-Olmeda","doi":"10.1007/s10695-025-01461-7","DOIUrl":null,"url":null,"abstract":"<p><p>The circadian system plays a crucial role in most physiological processes. The molecular clock is linked to epigenetic mechanisms, both of which are influenced by nutrient status and, consequently, to feeding. This research investigated how feeding times (mid-light, ML, vs. mid-dark, MD) synchronize daily rhythms of behavior, clock genes, and epigenetic mechanisms in the European sea bass (Dicentrarchus labrax), focusing on hypothalamus and liver to assess the impact on central and peripheral pacemakers. Feeding at MD influenced the molecular clock of the hypothalamus, causing shifts in acrophases (peaks) for genes of the negative loop (per1b, per2, cry1a). In the liver, the ML fed group showed rhythmic expression for all clock genes, whereas only per2 maintained the rhythms in the MD group. Epigenetic genes related to methylation (dnmt1, dnmt3a) and demethylation (tet2, gadd45aa, mbd4) in the liver displayed rhythmic expression in the ML group, but only dnmt3a maintained the rhythm in the MD group. Nutrient-related factors (SAM and SAH) showed differences between day and night, suggesting a different utilization based on feeding times. Finally, sirt1, a gene involved in deacetylation, displayed a clear daily rhythm in the ML group. All epigenetic genes peaked during the night (resting phase). Overall, these findings indicated feeding time serves as a potent zeitgeber, synchronizing circadian clock and epigenetic rhythms in the liver, with peaks during the resting phase, suggesting this phase represents the adequate time for epigenetic modifications.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"50"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01461-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The circadian system plays a crucial role in most physiological processes. The molecular clock is linked to epigenetic mechanisms, both of which are influenced by nutrient status and, consequently, to feeding. This research investigated how feeding times (mid-light, ML, vs. mid-dark, MD) synchronize daily rhythms of behavior, clock genes, and epigenetic mechanisms in the European sea bass (Dicentrarchus labrax), focusing on hypothalamus and liver to assess the impact on central and peripheral pacemakers. Feeding at MD influenced the molecular clock of the hypothalamus, causing shifts in acrophases (peaks) for genes of the negative loop (per1b, per2, cry1a). In the liver, the ML fed group showed rhythmic expression for all clock genes, whereas only per2 maintained the rhythms in the MD group. Epigenetic genes related to methylation (dnmt1, dnmt3a) and demethylation (tet2, gadd45aa, mbd4) in the liver displayed rhythmic expression in the ML group, but only dnmt3a maintained the rhythm in the MD group. Nutrient-related factors (SAM and SAH) showed differences between day and night, suggesting a different utilization based on feeding times. Finally, sirt1, a gene involved in deacetylation, displayed a clear daily rhythm in the ML group. All epigenetic genes peaked during the night (resting phase). Overall, these findings indicated feeding time serves as a potent zeitgeber, synchronizing circadian clock and epigenetic rhythms in the liver, with peaks during the resting phase, suggesting this phase represents the adequate time for epigenetic modifications.
期刊介绍:
Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.