Multifaceted stress response in Nile tilapia (Oreochromis niloticus) fingerlings: integrative analysis of salinity, ammonia, and stocking density effects on growth, physiology, and gene expression.
Sameh Metwaly, Hala Nasr, Khalifa Ahmed, Mohamed Fathi
{"title":"Multifaceted stress response in Nile tilapia (Oreochromis niloticus) fingerlings: integrative analysis of salinity, ammonia, and stocking density effects on growth, physiology, and gene expression.","authors":"Sameh Metwaly, Hala Nasr, Khalifa Ahmed, Mohamed Fathi","doi":"10.1007/s10695-025-01462-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effects of salinity, ammonia, and stocking density on Nile tilapia (Oreochromis niloticus) fingerlings over a 74-days. In three separate experiments, fingerlings (initial weight 25 ± 2.4 g) were exposed to salinity levels (5, 10, 15, and 20 ppt), ammonia concentrations (0.01, 0.02, 0.1, and 0.2 mg/L), and stocking densities (10, 15, 20, and 25 fish per 96 L aquarium). Survival, growth performance, biochemical parameters, and gene expression changes were assessed. Salinity ≥ 15 ppt and ammonia ≥ 0.1 mg/L significantly impaired growth (final weight, weight gain, specific growth rate, and feed efficiency) and increased mortality rates, reaching 37% and 56% at 20 ppt salinity and 0.2 mg/L ammonia, respectively. Elevated salinity and ammonia also caused significant increases in the activities of ALT, AST, LDH enzymes, along with higher serum glucose levels, while disrupting serum protein and ion concentrations, indicating considerable metabolic and osmoregulatory disturbances. At the molecular level, the expression of the growth-promoting IGF-I gene was down-regulated, while inflammatory marker TNFα was up-regulated, suggesting compromised health. Stocking density had less pronounced effects, though densities ≥ 20 fish/aquarium led to reduced growth, altered biochemical markers, and gene expression changes compared to 10-15 fish/aquarium. These findings establish salinity and ammonia tolerance thresholds for tilapia fingerlings, emphasize optimal stocking density, and provide insights into the physiological and molecular responses to multifactorial stressors. The study contributes to sustainable management strategies for tilapia aquaculture under variable environmental conditions.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"48"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01462-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effects of salinity, ammonia, and stocking density on Nile tilapia (Oreochromis niloticus) fingerlings over a 74-days. In three separate experiments, fingerlings (initial weight 25 ± 2.4 g) were exposed to salinity levels (5, 10, 15, and 20 ppt), ammonia concentrations (0.01, 0.02, 0.1, and 0.2 mg/L), and stocking densities (10, 15, 20, and 25 fish per 96 L aquarium). Survival, growth performance, biochemical parameters, and gene expression changes were assessed. Salinity ≥ 15 ppt and ammonia ≥ 0.1 mg/L significantly impaired growth (final weight, weight gain, specific growth rate, and feed efficiency) and increased mortality rates, reaching 37% and 56% at 20 ppt salinity and 0.2 mg/L ammonia, respectively. Elevated salinity and ammonia also caused significant increases in the activities of ALT, AST, LDH enzymes, along with higher serum glucose levels, while disrupting serum protein and ion concentrations, indicating considerable metabolic and osmoregulatory disturbances. At the molecular level, the expression of the growth-promoting IGF-I gene was down-regulated, while inflammatory marker TNFα was up-regulated, suggesting compromised health. Stocking density had less pronounced effects, though densities ≥ 20 fish/aquarium led to reduced growth, altered biochemical markers, and gene expression changes compared to 10-15 fish/aquarium. These findings establish salinity and ammonia tolerance thresholds for tilapia fingerlings, emphasize optimal stocking density, and provide insights into the physiological and molecular responses to multifactorial stressors. The study contributes to sustainable management strategies for tilapia aquaculture under variable environmental conditions.
期刊介绍:
Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.