Multifaceted stress response in Nile tilapia (Oreochromis niloticus) fingerlings: integrative analysis of salinity, ammonia, and stocking density effects on growth, physiology, and gene expression.

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sameh Metwaly, Hala Nasr, Khalifa Ahmed, Mohamed Fathi
{"title":"Multifaceted stress response in Nile tilapia (Oreochromis niloticus) fingerlings: integrative analysis of salinity, ammonia, and stocking density effects on growth, physiology, and gene expression.","authors":"Sameh Metwaly, Hala Nasr, Khalifa Ahmed, Mohamed Fathi","doi":"10.1007/s10695-025-01462-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effects of salinity, ammonia, and stocking density on Nile tilapia (Oreochromis niloticus) fingerlings over a 74-days. In three separate experiments, fingerlings (initial weight 25 ± 2.4 g) were exposed to salinity levels (5, 10, 15, and 20 ppt), ammonia concentrations (0.01, 0.02, 0.1, and 0.2 mg/L), and stocking densities (10, 15, 20, and 25 fish per 96 L aquarium). Survival, growth performance, biochemical parameters, and gene expression changes were assessed. Salinity ≥ 15 ppt and ammonia ≥ 0.1 mg/L significantly impaired growth (final weight, weight gain, specific growth rate, and feed efficiency) and increased mortality rates, reaching 37% and 56% at 20 ppt salinity and 0.2 mg/L ammonia, respectively. Elevated salinity and ammonia also caused significant increases in the activities of ALT, AST, LDH enzymes, along with higher serum glucose levels, while disrupting serum protein and ion concentrations, indicating considerable metabolic and osmoregulatory disturbances. At the molecular level, the expression of the growth-promoting IGF-I gene was down-regulated, while inflammatory marker TNFα was up-regulated, suggesting compromised health. Stocking density had less pronounced effects, though densities ≥ 20 fish/aquarium led to reduced growth, altered biochemical markers, and gene expression changes compared to 10-15 fish/aquarium. These findings establish salinity and ammonia tolerance thresholds for tilapia fingerlings, emphasize optimal stocking density, and provide insights into the physiological and molecular responses to multifactorial stressors. The study contributes to sustainable management strategies for tilapia aquaculture under variable environmental conditions.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"48"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01462-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of salinity, ammonia, and stocking density on Nile tilapia (Oreochromis niloticus) fingerlings over a 74-days. In three separate experiments, fingerlings (initial weight 25 ± 2.4 g) were exposed to salinity levels (5, 10, 15, and 20 ppt), ammonia concentrations (0.01, 0.02, 0.1, and 0.2 mg/L), and stocking densities (10, 15, 20, and 25 fish per 96 L aquarium). Survival, growth performance, biochemical parameters, and gene expression changes were assessed. Salinity ≥ 15 ppt and ammonia ≥ 0.1 mg/L significantly impaired growth (final weight, weight gain, specific growth rate, and feed efficiency) and increased mortality rates, reaching 37% and 56% at 20 ppt salinity and 0.2 mg/L ammonia, respectively. Elevated salinity and ammonia also caused significant increases in the activities of ALT, AST, LDH enzymes, along with higher serum glucose levels, while disrupting serum protein and ion concentrations, indicating considerable metabolic and osmoregulatory disturbances. At the molecular level, the expression of the growth-promoting IGF-I gene was down-regulated, while inflammatory marker TNFα was up-regulated, suggesting compromised health. Stocking density had less pronounced effects, though densities ≥ 20 fish/aquarium led to reduced growth, altered biochemical markers, and gene expression changes compared to 10-15 fish/aquarium. These findings establish salinity and ammonia tolerance thresholds for tilapia fingerlings, emphasize optimal stocking density, and provide insights into the physiological and molecular responses to multifactorial stressors. The study contributes to sustainable management strategies for tilapia aquaculture under variable environmental conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信