{"title":"Investigation of LncRNA Expression Profiles and Analysis of Immune-Related lncRNA-miRNA-mRNA Networks in Neovascular Age-Related Macular Degeneration.","authors":"Liying Qin, Xiang Gao, Xiuhai Lu, Wencai Liu, Jingyi Tian, Gongqiang Yuan","doi":"10.2174/0113862073342212250102042734","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Age-related Macular Degeneration (AMD) is a predominant cause of blindness in the elderly. The present study is the first to investigate the alteration of lncRNAs and mRNAs in neovascular AMD.</p><p><strong>Methods: </strong>Nine patients with neovascular AMD were included in the study. The control group comprised seven patients with epiretinal membranes. RNA sequencing was performed to obtain the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs). Then, the DElncRNA-DEmRNA co-expression network, ceRNA network, and immune-related ceRNA subnetwork were constructed. Functional annotation of DEmRNAs between the two groups and DEmRNAs in networks was conducted. The immune cell distribution in neovascular AMD was also evaluated. Real-time qPCR (RT-qPCR) was used to validate the expression levels of key markers.</p><p><strong>Results: </strong>A total of 342 DEmRNAs and 157 DElncRNAs were obtained in neovascular AMD. Functional annotation indicated that these DEmRNAs significantly enriched immune systemrelated processes, such as positive regulation of B cell activation, immunoglobulin receptor binding, complement activation, and classical pathway. The DElncRNA-DEmRNA co-expression network, including 185 DElncRNA-DEmRNA co-expression pairs, and the ceRNA (DElncRNA-miRNA-DEmRNA) network, containing 45 lncRNA-miRNA pairs and 73 miRNAmRNA pairs, were constructed. The immune-related ceRNA subnetwork, including 2 lncRNAs, 5 miRNAs, and 3 mRNAs, was constructed. In addition, the distribution of immune cells was slightly different between the neovascular AMD group and the control group. RT-qPCR validation indicated the consistency between the RT-qPCR results and RNA sequencing results.</p><p><strong>Conclusion: </strong>In conclusion, STC1, S100A1, MEG3, MEG3-hsa-miR-608-S100A1, and MEG3- hsa-miR-130b-3p/hsa-miR-149-3p-STC1 may be related to the occurrence and development of neovascular AMD.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073342212250102042734","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Age-related Macular Degeneration (AMD) is a predominant cause of blindness in the elderly. The present study is the first to investigate the alteration of lncRNAs and mRNAs in neovascular AMD.
Methods: Nine patients with neovascular AMD were included in the study. The control group comprised seven patients with epiretinal membranes. RNA sequencing was performed to obtain the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs). Then, the DElncRNA-DEmRNA co-expression network, ceRNA network, and immune-related ceRNA subnetwork were constructed. Functional annotation of DEmRNAs between the two groups and DEmRNAs in networks was conducted. The immune cell distribution in neovascular AMD was also evaluated. Real-time qPCR (RT-qPCR) was used to validate the expression levels of key markers.
Results: A total of 342 DEmRNAs and 157 DElncRNAs were obtained in neovascular AMD. Functional annotation indicated that these DEmRNAs significantly enriched immune systemrelated processes, such as positive regulation of B cell activation, immunoglobulin receptor binding, complement activation, and classical pathway. The DElncRNA-DEmRNA co-expression network, including 185 DElncRNA-DEmRNA co-expression pairs, and the ceRNA (DElncRNA-miRNA-DEmRNA) network, containing 45 lncRNA-miRNA pairs and 73 miRNAmRNA pairs, were constructed. The immune-related ceRNA subnetwork, including 2 lncRNAs, 5 miRNAs, and 3 mRNAs, was constructed. In addition, the distribution of immune cells was slightly different between the neovascular AMD group and the control group. RT-qPCR validation indicated the consistency between the RT-qPCR results and RNA sequencing results.
Conclusion: In conclusion, STC1, S100A1, MEG3, MEG3-hsa-miR-608-S100A1, and MEG3- hsa-miR-130b-3p/hsa-miR-149-3p-STC1 may be related to the occurrence and development of neovascular AMD.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.