A bacterial artificial chromosome mouse model of amyotrophic lateral sclerosis manifests 'space cadet syndrome' on two FVB backgrounds.

IF 4 3区 医学 Q2 CELL BIOLOGY
Disease Models & Mechanisms Pub Date : 2025-02-01 Epub Date: 2025-02-13 DOI:10.1242/dmm.052221
Sophie E Badger, Ian Coldicott, Ergita Kyrgiou-Balli, Adrian Higginbottom, Chloé Moutin, Kamallia Mohd Imran, John C Day, Johnathan Cooper-Knock, Richard J Mead, James J P Alix
{"title":"A bacterial artificial chromosome mouse model of amyotrophic lateral sclerosis manifests 'space cadet syndrome' on two FVB backgrounds.","authors":"Sophie E Badger, Ian Coldicott, Ergita Kyrgiou-Balli, Adrian Higginbottom, Chloé Moutin, Kamallia Mohd Imran, John C Day, Johnathan Cooper-Knock, Richard J Mead, James J P Alix","doi":"10.1242/dmm.052221","DOIUrl":null,"url":null,"abstract":"<p><p>C9orf72-related amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) has proven difficult to model in mice. Liu et al. (2016) reported a bacterial artificial chromosome (BAC) transgenic mouse displaying behavioural, motor and pathological abnormalities. This was followed by multiple laboratories independently refuting and confirming phenotypes. A proposed explanation centred on the use of different FVB background lines (from The Jackson Laboratory and Janvier Labs). We studied C9orf72 BAC mice on both backgrounds and found significantly elevated levels of dipeptide repeat proteins, but no evidence of a transgene-associated phenotype. We observed seizures and a gradual decline in functional performance in transgenic and non-transgenic mice, irrespective of genetic background. The phenotype was in keeping with the so-called 'space cadet syndrome'. Our findings indicate that the differences previously reported are not due to C9orf72 status and highlight the importance of using genetic backgrounds that do not confound interpretation of neurodegenerative phenotypes.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":"18 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052221","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

C9orf72-related amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) has proven difficult to model in mice. Liu et al. (2016) reported a bacterial artificial chromosome (BAC) transgenic mouse displaying behavioural, motor and pathological abnormalities. This was followed by multiple laboratories independently refuting and confirming phenotypes. A proposed explanation centred on the use of different FVB background lines (from The Jackson Laboratory and Janvier Labs). We studied C9orf72 BAC mice on both backgrounds and found significantly elevated levels of dipeptide repeat proteins, but no evidence of a transgene-associated phenotype. We observed seizures and a gradual decline in functional performance in transgenic and non-transgenic mice, irrespective of genetic background. The phenotype was in keeping with the so-called 'space cadet syndrome'. Our findings indicate that the differences previously reported are not due to C9orf72 status and highlight the importance of using genetic backgrounds that do not confound interpretation of neurodegenerative phenotypes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信