Cellular rejuvenation protects neurons from inflammation-mediated cell death.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Sienna S Drake, Abdulshakour Mohammadnia, Aliyah Zaman, Christine Gianfelice, Kali Heale, Adam M R Groh, Elizabeth M-L Hua, Matthew A Hintermayer, Yuancheng Ryan Lu, David Gosselin, Stephanie Zandee, Alexandre Prat, Jo Anne Stratton, David A Sinclair, Alyson E Fournier
{"title":"Cellular rejuvenation protects neurons from inflammation-mediated cell death.","authors":"Sienna S Drake, Abdulshakour Mohammadnia, Aliyah Zaman, Christine Gianfelice, Kali Heale, Adam M R Groh, Elizabeth M-L Hua, Matthew A Hintermayer, Yuancheng Ryan Lu, David Gosselin, Stephanie Zandee, Alexandre Prat, Jo Anne Stratton, David A Sinclair, Alyson E Fournier","doi":"10.1016/j.celrep.2025.115298","DOIUrl":null,"url":null,"abstract":"<p><p>In multiple sclerosis (MS), inflammation of the central nervous system results in demyelination, neuroaxonal injury, and cell death. However, the molecular signals responsible for injury and cell death in neurons are not fully characterized. Here, we profile the transcriptome of retinal ganglion cells (RGCs) in experimental autoimmune encephalomyelitis (EAE) mice. Pathway analysis identifies a transcriptional signature reminiscent of aged RGCs with some senescent features, with a comparable signature present in neurons from patients with MS. This is supported by immunostaining demonstrating alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4-Sox2-Klf4 adeno-associated virus (AAV) to rejuvenate the transcriptome enhances RGC survival in EAE and improves visual acuity. Collectively, these data reveal an aging-like phenotype in neurons under pathological neuroinflammation and support the possibility that rejuvenation therapies or senotherapeutic agents could offer a direct avenue for neuroprotection in neuroimmune disorders.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115298"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115298","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In multiple sclerosis (MS), inflammation of the central nervous system results in demyelination, neuroaxonal injury, and cell death. However, the molecular signals responsible for injury and cell death in neurons are not fully characterized. Here, we profile the transcriptome of retinal ganglion cells (RGCs) in experimental autoimmune encephalomyelitis (EAE) mice. Pathway analysis identifies a transcriptional signature reminiscent of aged RGCs with some senescent features, with a comparable signature present in neurons from patients with MS. This is supported by immunostaining demonstrating alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4-Sox2-Klf4 adeno-associated virus (AAV) to rejuvenate the transcriptome enhances RGC survival in EAE and improves visual acuity. Collectively, these data reveal an aging-like phenotype in neurons under pathological neuroinflammation and support the possibility that rejuvenation therapies or senotherapeutic agents could offer a direct avenue for neuroprotection in neuroimmune disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信