Morphological and Molecular Biological Changes in the Hippocampus and Prefrontal Cortex of the Brain of Newborn Male and Female Wistar Rats after LPS-Induced Activation of the Maternal Immune Response.
A S Lyamtsev, A V Sentyabreva, I S Tsvetkov, E A Miroshnichenko, A M Kosyreva
{"title":"Morphological and Molecular Biological Changes in the Hippocampus and Prefrontal Cortex of the Brain of Newborn Male and Female Wistar Rats after LPS-Induced Activation of the Maternal Immune Response.","authors":"A S Lyamtsev, A V Sentyabreva, I S Tsvetkov, E A Miroshnichenko, A M Kosyreva","doi":"10.1007/s10517-025-06341-x","DOIUrl":null,"url":null,"abstract":"<p><p>Infectious and inflammatory processes during pregnancy in women provoke maternal immunity activation (MIA) and increase the risk of neuropsychiatric disorders in children. These disorders can lead to neurodegenerative diseases later in life. To study these effects, we evaluated the morphological and molecular biological changes in the hippocampus and prefrontal cortex of male and female Wistar rats on the 1st day of postnatal ontogenesis after LPS-induced MIA. The level of calprotectin in the blood serum of postpartum rats, the number and morphological properties of microglial cells in the hippocampus, and the expression of proinflammatory, stem, and adaptation markers in fragments of the prefrontal cortex in offspring of both sexes were determined. It was found that LPS-induced MIA had a negative effect on the developing offspring, with an increase in the level of expression of Nfκb and App in the prefrontal cortex of newborns being observed. Sex differences in morphological and molecular biological changes in the brains of newborn Wistar rats were also revealed: the number of microglial cells increased in male rats, while the number of ramified microglial cells decreased in female rats. In addition, only in females, the expression levels of the mRNA markers for stem cells, Sox2 and Sox9, decreased, while the expression level of Hif1α, which has a neuroprotective effect, increased only in males. These data may explain the differences in the incidence of neurodegenerative diseases among elderly patients of different sexes.</p>","PeriodicalId":9331,"journal":{"name":"Bulletin of Experimental Biology and Medicine","volume":" ","pages":"381-386"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10517-025-06341-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Infectious and inflammatory processes during pregnancy in women provoke maternal immunity activation (MIA) and increase the risk of neuropsychiatric disorders in children. These disorders can lead to neurodegenerative diseases later in life. To study these effects, we evaluated the morphological and molecular biological changes in the hippocampus and prefrontal cortex of male and female Wistar rats on the 1st day of postnatal ontogenesis after LPS-induced MIA. The level of calprotectin in the blood serum of postpartum rats, the number and morphological properties of microglial cells in the hippocampus, and the expression of proinflammatory, stem, and adaptation markers in fragments of the prefrontal cortex in offspring of both sexes were determined. It was found that LPS-induced MIA had a negative effect on the developing offspring, with an increase in the level of expression of Nfκb and App in the prefrontal cortex of newborns being observed. Sex differences in morphological and molecular biological changes in the brains of newborn Wistar rats were also revealed: the number of microglial cells increased in male rats, while the number of ramified microglial cells decreased in female rats. In addition, only in females, the expression levels of the mRNA markers for stem cells, Sox2 and Sox9, decreased, while the expression level of Hif1α, which has a neuroprotective effect, increased only in males. These data may explain the differences in the incidence of neurodegenerative diseases among elderly patients of different sexes.
期刊介绍:
Bulletin of Experimental Biology and Medicine presents original peer reviewed research papers and brief reports on priority new research results in physiology, biochemistry, biophysics, pharmacology, immunology, microbiology, genetics, oncology, etc. Novel trends in science are covered in new sections of the journal - Biogerontology and Human Ecology - that first appeared in 2005.
World scientific interest in stem cells prompted inclusion into Bulletin of Experimental Biology and Medicine a quarterly scientific journal Cell Technologies in Biology and Medicine (a new Russian Academy of Medical Sciences publication since 2005). It publishes only original papers from the leading research institutions on molecular biology of stem and progenitor cells, stem cell as the basis of gene therapy, molecular language of cell-to-cell communication, cytokines, chemokines, growth and other factors, pilot projects on clinical use of stem and progenitor cells.
The Russian Volume Year is published in English from April.